K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có \(\widehat{ABC}=180-70-50=60^o\)

\(\Rightarrow ACM=MCB=30^o\)

\(\Rightarrow NMB=BAC+ACM=100^o\)

\(\Rightarrow MNB=180^o-NMB-MBN=40^o=MBN\)

Từ M kẻ \(MH\perp BC\Rightarrow MH=\frac{1}{2}MC\) 

Từ M kẻ \(MK\perp BN\Rightarrow MK=\frac{1}{2}BN\) ( do \(\Delta MBN\)cân tại M )

Xét \(\Delta MKB=\Delta BHM\)( cạnh huyền - góc nhọn )

\(\Rightarrow BK=MH\)

\(\Rightarrow MC=BN\)

26 tháng 2 2018

Ta có: \(\widehat{ABC}=180^o-\left(70^o+50^o\right)=180^0-120^o=60^o\)

\(\Rightarrow\widehat{ACM}=\widehat{BCM}=30^o\)

\(\Rightarrow\widehat{BMN}=\widehat{BAC}+\widehat{MCA}=100^o\)

\(\Rightarrow\widehat{BMN}=180^o-\widehat{BMN}-\widehat{MBN}=40^o\)

\(\Rightarrow\widehat{BMN}=\widehat{MBN}\)

Kẻ \(MH\perp BC\)

\(\Rightarrow MK=\frac{1}{2}BN\)

\(\Delta MKB=\Delta BHM\left(ch-gn\right)\)( tự chứng minh )

\(\Rightarrow BK=MH\Rightarrow MC=BN\)hay \(BN=MC\)

Vậy BN = MC ( đpcm )

24 tháng 3 2018

sao 2 tam giác đó bằng nhau được ???

vẽ hình ra đi

13 tháng 8 2016

Theo hình thì thấy là BN < MC

10 tháng 4 2017

minh thay cau tra loi cua ban ay la dung

13 tháng 8 2016

\(\widehat{ABC}=180^0-70^0-50^0=60^0\)

\(\Rightarrow\widehat{ACM}=\widehat{MCB}=30^0\)

\(\Rightarrow\widehat{NMB}=\widehat{BAC}+\widehat{ACM}=100^0\)

\(\Rightarrow\widehat{MNB}=180^0-\widehat{NMB}-\widehat{MBN}=40^0=\widehat{MBN}\)

từ M kẻ MH  _|_ BC 

\(\Rightarrow MK=\frac{1}{2}BN\)  ( do sin \(30^0=\frac{1}{2}\) )

từ M kẻ MK_|_ BN

\(\Rightarrow MK=\frac{1}{2}BN\)  ( do tam giác MBN  cân tại M)

xét tam giác MKB và tam giác BHM ( cạnh huyền - góc nhọn)

=> BK=MH=>MC=BN(đpcm)

13 tháng 8 2016

Có : ACB = 180 - 70 - 50 = 60 (độ)

=> ACM = MCB = 30 (độ)

=> NMB = BAC + ACM = 100 (độ)

=> MNB = 180 - NMB - MBN = 40 độ = MBN

Từ M kẻ MH vuông BC => MH = 1/2 MC (do sin 30 = 1/2)

Từ M kẻ MK vuông BN = MK = 1/2 BN (do tam giác MBN cân tại M)

Xét tam giác MKB = tam giác BHM (cạnh huyền - góc nhọn)

=> BK = MH => MC = BN

 
 
17 tháng 3 2018

Có ABC = 180 - 70 - 50 = 60\(^o\)

=> ACM = MCB  = 30\(^o\)

=> NMB = BAC + ACM = 100\(^o\)

=> MNB = 180 - NMB  - MBN = 40\(^o\)= MBN

Từ M kẻ MH vuông BC => MH = \(\frac{1}{2}\)MC\((\)do sin 30 = \(\frac{1}{2}\)\()\)

Từ M kẻ MK vuông BN = MK = \(\frac{1}{2}\)BN\((\)do\(\Delta MBN\)cân tại M\()\)

Xét \(\Delta MKB=\Delta BHM\)\((\)cạnh huyền - góc nhọn \()\)

=> BK = MH => MC = BN

6 tháng 2 2020

A C B D E O M N I

∆ABC (^A = 90o)

=> ^ABC + ^ACB = 90o (t/c)

Mà ^B1 = ^B2 = ^ABC/2 ( BD là p/g của ^ABC)

      ^C1 = ^C2 = ^ACB/2 ( CE là p/g của ^ACB)

=> ^B2 + ^C1 = \(\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{90^o}{2}=45^o\)

+Xét ∆BOC có : ^B2 + ^C1 + ^BOC = 180o (đlý)

Mà ^B2 + C1 = 45o

=> ^BOC = 180o - 45o = 135o

b) Xét ∆ABD, ∆MBD có :

BA = BM (gt)

^B1 = ^B2 (câu a)

BD chung

Do đó : ∆ABD = ∆MBD (c-g-c)

=> ^A = ^BMD (góc tương ứng)

Mà ^A = 90o => ^BMD = 90o

=> DM _|_ BC

Cmtt ta cũng có EN _|_ BC

=> DM // EN

c) +Xét ∆ABI , ∆MBI có :

B1 = B2

BI chung

BA = BM (gt)

Do đó : ∆ABI = ∆MBI (c-g-c)

=> AI = MI (2 cạnh tương ứng)

Xét ∆AIM có AI = MI (cmt) => ∆AIM cân