K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

Có độ dài của các cạnh tam giác ABC rồi mà đáng lẽ phải tính các cạnh của tam giác A'B'C' chứ ????

Tự vẽ hình nha :"))))

Ta có tam giác ABC đồng dạng với tam giác A'B'C' 

\(\Rightarrow\frac{S_{ABC}}{S_{A'B'C'}}=\left(\frac{AB}{A'B'}\right)^2\)

Mà tam giác ABC có độ dài các cạnh là 3,4,5 nên là tam giác vuông

\(\Rightarrow S_{ABC}=\frac{1}{2}.3.4=6\left(cm^2\right)\)

\(\Rightarrow\frac{6}{54}=\left(\frac{AB}{A'B'}\right)^2\Rightarrow\left(\frac{AB}{A'B'}\right)^2=\frac{1}{9}\Rightarrow\frac{AB}{A'B'}=\frac{1}{3}\)

\(\Rightarrow A'B'=3.AB=3.3\)

Nên mỗi cạnh của tam giác A'B'C' gấp 3 lần của cạnh của tam giác ABC.

Suy ra ba cạnh của tam giác A'B'C là 9cm, 12cm, 15cm
 


 



 

17 tháng 4 2020

A A' B B' C C'

Xét ΔABC có: AB2 + AC2 = 32 + 42 = 25 = 52 = BC2

⇒ ΔABC vuông tại A (Định lý Pytago đảo)

⇒ Diện tích tam giác ABC bằng

\(S=\frac{1}{2}.AB.AC=6\left(cm^2\right)\)

\(\Delta ABC~\Delta A'B'C'\left(gt\right)\)

\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}=k\)

( với k là tỉ số đồng dạng ).

Lại có tỉ số diện tích bằng bình phương tỉ số đồng dạng

\(\Rightarrow k^2=\frac{S_{A'B'C'}}{S_{ABC}}=\frac{54}{6}=9\Rightarrow k=3\)

\(\Rightarrow A'B'=3.AB=3.3=9\left(cm\right)\)

\(B'C'=3.BC=3.5=15\left(cm\right)\)

\(C'A'=3.CA=3.4=12\left(cm\right)\)

Vậy độ dài ba cạnh của tam giác lần lượt là 9cm, 12cm, 15cm.

29 tháng 9 2018

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

Xét ΔABC có: AB2 + AC2 = 32 + 42 = 25 = 52 = BC2

⇒ ΔABC vuông tại A (Định lý Pytago đảo)

⇒ Diện tích tam giác ABC bằng:

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

(với k là tỉ số đồng dạng).

Lại có tỉ số diện tích bằng bình phương tỉ số đồng dạng

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ A’B’ = 3.AB = 3.3 = 9 (cm)

B’C’ = 3.BC = 3.5 = 15 (cm)

C’A’ = 3.CA = 3.4 = 12 (cm)

Vậy độ dài ba cạnh của tam giác lần lượt là 9cm, 12cm, 15cm.

22 tháng 4 2017

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 47 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

15 tháng 4 2020

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

15 tháng 4 2020

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~

22 tháng 4 2017

∆ABC ∽ ∆A'B'C' => ABABABA′B′ = BCBCBCB′C′= CACACAC′A′ = CABCCABCCABCCA′B′C′

hay 3AB3A′B′ = 7BC7B′C′ = 5AC5A′C′ = CABC55CABC55 = 311311

=> A'B' = 11cm;

B'C' = 7.1137.113 ≈ 25.67 cm

A'C' = 5.1135.113 ≈ 18,33 cm

22 tháng 4 2017

bài 30 trang 75 SGK Toán 8 Tập 2

Theo bài ra ta có:

Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

12 tháng 11 2017

Chu vi tam giác ABC là: AB + BC + CA = 3 + 7 + 5 = 15 (cm)

Δ A’B’C’ Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC ⇒ Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

Giải bài 30 trang 75 SGK Toán 8 Tập 2 | Giải toán lớp 8

15 tháng 1 2019

Suy ra: tam giác ABC vuông tại A.

Diện tích tam giác ABC là:

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

*Gọi tam giác ABC đồng dạng với tam giác MNP theo tỉ số k

Suy ra:

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Thay số

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) nên tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Do đó, \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6}\). Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6} = \frac{{A'B' + B'C' + A'C'}}{{4 + 6 + 9}} = \frac{{66,5}}{{19}} = 3,5\)

Ta có:

\(\left\{ \begin{array}{l}\frac{{A'B'}}{4} = 3,5 \Rightarrow A'B' = 3,5.4 = 14\\\frac{{A'C'}}{6} = 3,5 \Rightarrow A'C' = 3,5.6 = 21\\\frac{{B'C'}}{9} = 3,5 \Rightarrow B'C' = 3,5.9 = 31,5\end{array} \right.\)

Vậy \(A'B' = 14cm,A'C' = 21cm,B'C' = 31,5cm\).