Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mới giải đc câu a và câu 1 phần d) thôi nhưng muộn quá:
a)Xét 2 tam giac ACN va tam giac ABM co:
AB=AC(GT)
A chung
AN=AM(GT)
=>tam giac ACN=tam giac ABM(c.g.c).Mình mới làm tới đây thôi.Chúc ngủ ngon
a) Có: AM = CM = AC/2 (gt); AN = BN = AB/2 (gt)
Mà AC = AB (gt) nên AM = CM = AN = BN
Xét t/g ABM và t/g ACN có:
AB = AC (gt)
A là góc chung
AM = AN (cmt)
Do đó, t/g ABM = t/g ACN (c.g.c) (đpcm)
b) t/g ABC có AB = AC (gt) => t/g ABC cân tại A
=> ABC = ACB ( tính chất t/g cân) (1)
t/g ABM = t/g ACN (câu a)
=> ABM = ACN (2 góc tương ứng) (2)
Từ (1) và (2) => ABC - ABM = ACB - ACN
=> MBC = NCB
=> t/g BOC có góc bằng nhau (cân tại O) (đpcm)
c) Xét t/g ANF và t/g BNC có:
AN = NB (gt)
ANF = BNC ( đối đỉnh)
NF = NC (gt)
Do đó, t/g ANF = t/g BNC (c.g.c)
=> AF = BC (2 cạnh tương ứng)
AFN = BCN (2 góc tương ứng)
Mà AFN và BCN là 2 góc ở vị trí so le trong nên AF // BC (1)
Tương tự như vậy ta cũng có: t/g AME = t/g CMB (c.g.c)
AE = BC và AE // BC (2)
Từ (1) và (2) => AF và AE trùng nhau hay A,E,F thẳng hàng
Lại có: AE = AF = BC
Do đó A là trung điểm của EF (đpcm)
d) t/g AMN có AM = AN (câu a)
=> t/g AMN cân tại A
=> AMN = ANM ( tính chất t/g cân)
=> MAN = 180o - 2.AMN (3)
Ta cũng có: ABC = ACB (câu b)
=> CAB = 180o - 2.ACB (4)
Từ (3) và (4) => AMN = ACB
Mà AMN và ACB là 2 góc ở vị trí đồng vị nên MN // BC
Lại có: EF // BC (câu c) nên MN // BC // EF (đpcm)
Bạn vé hình giống của ((Me)) nhé ..
a, AB=AC (gt)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow\hept{\begin{cases}AN=AM\\CM=BN\end{cases}}\)
Xét 2 \(\Delta ABM\)và \(\Delta CAN\)có:
góc A chung
AB=AC(gt)
\(AN=AM\)( cmt)
\(\Rightarrow\Delta AMB=\Delta ACN\left(c.g.c\right)\)
Xét 2 \(\Delta BMC\)Và \(\Delta CNB\)Có:
Cạnh BC chung
Góc \(ABC\)= góc \(ACB\)
\(BN=CM\)(Cmt)
\(\Rightarrow\Delta NBC=\Delta MCB\left(c.g.c\right)\)
Từ A Kẻ \(AK\perp BC\)
\(\Rightarrow\)AK là đường phân giác của \(\Delta ABC\)(Vì \(\Delta ABC\)Là tam giác cân )
\(\Rightarrow NAK=KAC\)
gọI O là gia điểm của hai đường chéo CF và BE
Xét 2 \(\Delta ANO\)Và \(\Delta AMO\)Có :
Góc \(NAO\)= Góc \(MAO\)(Cmt)
Cạnh \(AO\)Chung
\(AN=AM\)(Theo câu a)
\(\Rightarrow\Delta ANO=\Delta AMO\left(C.g.c\right)\)
\(\Rightarrow ANO=AMO\)(Cặp góc tương ứng )
Ta có : góc \(FNA+ANO=180^O\)(Cặp góc kề bù )
góc \(EMA+AMO=180^O\)(Cặp góc kề bù )
Mà góc \(ANO=AMO\)(Cmt)
\(\Rightarrow EMA=FNA\)
vÌ \(\Delta ABC\)Cân và N ,M lần lượt là trung điểm của AB,AC
\(\Rightarrow CN=BM\)
\(\Rightarrow NF=ME\)
xÉT 2 \(\Delta AFN\)VÀ \(\Delta AEM\)có :
góc \(ANF=EMA\)(Cmt)
\(AM=AN\)(Cmt)
\(FN=ME\)(Cmt)
\(\Rightarrow\DeltaÀFN=\Delta AEM\left(C.g.c\right)\)
\(\Rightarrow AF=AE\)(CẶP CẠNH TƯƠNG ỨNG )
\(\Rightarrow A\)Là trung điểm của EF
Lấy I là gia điểm của NM và AK
Vì \(\Delta ABC\)là tam giác cân
\(\Rightarrow AK\)\(\perp MN\)
Ta có : \(\hept{\begin{cases}MN\perp AK\\BC\perp AK\end{cases}}\Rightarrow MN\)// \(BC\)(Tính chất từ vuông góc đến song song)
A B C D H E F M N
CM: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Xét t/giác MEB = t/giác NFC
có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)
BM = CN (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)
T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
\(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)
=> AH là tia p/giác của \(\widehat{A}\)
Mà AD cũng là tia p/giác của \(\widehat{A}\)
=> AH \(\equiv\) AD
=> A, D, H thẳng hàng
M: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
�^=�^B=C (vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
�^=�^B=C (vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> ���^=���^BAD=CAD (2 góc t/ứng)
=> AD là tia p/giác của ���^BAC
c) Xét t/giác MEB = t/giác NFC
có: ���^=���^=900BEM=CFN=900 (gt)
BM = CN (gt)
�^=�^B=C (vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> ���^=���^=1800−�^2AEF=AFE=21800−A (1)
T/giác ABC cân tại A
=> �^=�^=1800−�^2B=C=21800−A (2)
Từ (1) và (2) => ���^=�^AEF=B
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
���^=���^=900AEH=AFH=900 (gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> ���^=���^EAH=FAH (2 góc t/ứng)
=> AH là tia p/giác của �^A
Mà AD cũng là tia p/giác của �^A
=> AH ≡≡ AD
=> A, D, H thẳng hàng
a) Xét tam giác ABM và tam giác ACN:
Góc A chung
AB = AC (do tam giác ABC cân tại A)
AM = AN (gt)
Suy ra: tam giác ABM = tam giác ACN (c g c)
b) Xét tam giác AMN có :
AM =AN (gt)
Suy ra: tam giác AMN cân tại A
Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)
mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\) ( do tam giác ABC cân tại A)
Suy ra: góc ANM = góc ABC
Mà 2 góc này ở vị trí đồng vị của MN và BC
Suy ra MN song song BC