Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy E sao cho A là trung điểm của CE
Xét ΔEBC có
BA là đường trung tuyến
BA=CE/2
Do đó: ΔEBC vuông tại E
Xét ΔCBE có AH//BE
nên AH/BE=CH/CB=1/2
=>AH=1/2BE
Xét ΔBEC vuông tại B có BK là đường cao
nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)
=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Ok!
A B C K
Ta có: \(\dfrac{AK}{KC}=2.\left(\dfrac{AB}{BC}\right)^2-1\)
\(\Leftrightarrow\dfrac{AK}{KC}+1=2.\dfrac{AB^2}{BC^2}\)
\(\Leftrightarrow\dfrac{AK+KC}{KC}=2.\dfrac{AB.AC}{BC^2}\)
\(\Leftrightarrow\dfrac{AC}{KC}=\dfrac{2AB.AC}{BC^2}\) \(\Leftrightarrow\dfrac{1}{KC}=\dfrac{2AB}{BC^2}\)
\(\Leftrightarrow BC^2=KC.2AB\)
\(\Leftrightarrow BK^2+KC^2=2AB.KC\)
\(\Leftrightarrow AB^2-AK^2+KC^2=2AB.KC\)
\(\Leftrightarrow\left(AB-KC\right)^2=AK^2\)
\(\Leftrightarrow AB-KC=AK\)
\(\Leftrightarrow AB=AK+KC=AC\) ( Luôn đúng)
\(\Rightarrowđpcm\)
P/s: Gợi ý câu a:Từ H kẻ đt // AH cắt BC tại I Áp dụng hệ thức 4
A B C H K
Xét \(\Delta ACH;\Delta BCK\) có
\(\left\{{}\begin{matrix}\widehat{C}\left(chung\right)\\\widehat{AHC}=\widehat{BKC}=90^o\end{matrix}\right.\)
\(\Rightarrow\Delta ACH\sim\Delta BCK\)
\(\Rightarrow\dfrac{AH}{BK}=\dfrac{CH}{CK}\)
\(\Rightarrow AH.CK=BK.CH\)
\(\Rightarrow AH^2.CK^2=BK^2.CH^2\)
\(\Rightarrow AH^2.CK^2=\dfrac{BK^2.BC^2}{4}\)
\(\Rightarrow AH^2.\left(BC^2-BK^2\right)=\dfrac{BK^2.BC^2}{4}\)
Chia cả 2 vế cho: \(AH^2.BC^2.BK^2\)
\(\Rightarrow\dfrac{1}{BK^2}-\dfrac{1}{BC^2}=\dfrac{1}{4AH^2}\)
\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Bạn tự vẽ hình
Qua B kẻ đường thẳng song song AH cắt AC kéo dài tại D \(\Rightarrow DB\perp BC\)
\(\Rightarrow\Delta DBC\) vuông tại B
Lại có \(\Delta ABC\) cân tại A \(\Rightarrow H\) là trung điểm BC \(\Rightarrow AH\) là đường trung bình của \(\Delta DBC\Rightarrow BD=2AH\Rightarrow BD^2=4AH^2\)
Áp dụng hệ thức lượng trong tam giác vuông \(DBC\) với đường cao BK:
\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BD^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\) (đpcm)
A B C H D K
a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến
=> BH = HC
Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC
=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH
b) Xét tam giác BCD vuông tịa B có BK là đường cao
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Do tam giác ABC cân tại A nên AH là đường cao đồng thời là trung tuyến
Hay H là trung điểm BC \(\Rightarrow CH=\dfrac{BC}{2}\)
Từ H hạ HD vuông góc AC
\(\Rightarrow HD||BK\) (cùng vuông góc AC)
\(\Rightarrow\) HD là đường trung bình tam giác ACH
\(\Rightarrow HD=\dfrac{BK}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông ACH:
\(\dfrac{1}{HD^2}=\dfrac{1}{AH^2}+\dfrac{1}{CH^2}\)
\(\Rightarrow\dfrac{1}{\left(\dfrac{BK}{2}\right)^2}=\dfrac{1}{AH^2}+\dfrac{1}{\left(\dfrac{BC}{2}\right)^2}\Rightarrow\dfrac{4}{BK^2}=\dfrac{1}{AH^2}+\dfrac{4}{BC^2}\)
\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{4AH^2}+\dfrac{1}{BC^2}\)