K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 9 2017

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(A^2=\left ( \frac{1}{\sqrt{x+y+1}}+\frac{1}{\sqrt{y+z+1}+\frac{1}{\sqrt{z+x+1}}} \right )^2\leq (1+1+1)\left(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\right)\)

\(\Leftrightarrow A^2\leq 3\underbrace{\left(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\right)}_{M}\) \((1)\)

Xét M

Do $xyz=1$ nên tồn tại các số $a,b,c>0$ sao cho \((x,y,z)=\left(\frac{a^2}{bc},\frac{b^2}{ac},\frac{c^2}{ab}\right)\)

Khi đó \(M=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)

Với \(a,b>0\) ta luôn có BĐT sau: \(a^3+b^3\geq ab(a+b)\)

BĐT này luôn đúng vì tương đương với \((a+b)(a-b)^2\geq 0\)

Do đó, \(a^3+b^3+abc\geq ab(a+b)+abc=ab(a+b+c)\)

\(\Rightarrow \frac{abc}{a^3+b^3+abc}\leq \frac{abc}{ab(a+b+c)}=\frac{c}{a+b+c}\)

Thiết lập tương tự với các phân thức còn lại suy ra

\(M\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\Rightarrow 3M\leq 3\) \((2)\)

Từ \((1),(2)\Rightarrow A^2\leq 3\Leftrightarrow A\leq \sqrt{3}\Rightarrow A_{\max}=\sqrt{3}\)

Dấu bằng xảy ra khi \(x=y=z=1\)

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

13 tháng 8 2018

Ta có:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)

Áp dụng BĐT Cosi ta có:

\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\)

Cmtt:

\(\dfrac{y^3}{y\sqrt{1-y^2}}\ge2y^3\)

\(\dfrac{z^3}{z\sqrt{1-z^2}}\ge2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}+\dfrac{y^3}{y\sqrt{1-y^2}}+\dfrac{z^3}{z\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\) (ĐPCM)

26 tháng 10 2018

\(\sqrt{x}+\sqrt{y}=\sqrt{z}\Rightarrow x+y+2\sqrt{xy}=z\Rightarrow x+y-z=-2\sqrt{xy}\)

\(\sqrt{x}-\sqrt{z}=\sqrt{y}\Rightarrow x+z-2\sqrt{xz}=y\Rightarrow z+x-y=2\sqrt{xz}\)

Tương tự:\(y+z-x=2\sqrt{yz}\)

\(A=\frac{1}{-2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{zx}}=\frac{1}{2}\left(\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}\right)=0\)

2 tháng 12 2019

Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)

Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

16 tháng 8 2018

\(\sum\sqrt{\dfrac{1+x^3+y^3}{xy}}\ge\sum\sqrt{\dfrac{3xy}{xy}}\ge3\sqrt{3}\)

chắc là bạn ghi sai đề rồi -_- ;

16 tháng 8 2018

Đúng đấy