Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\left(\sqrt{20}\right)^2-2.\sqrt{20}.\sqrt{9}+\left(\sqrt{9}\right)^2}=\sqrt{\left(\sqrt{20}-\sqrt{9}\right)^2}=\left|\sqrt{20}-\sqrt{9}\right|=\sqrt{20}-3=2\sqrt{5}-3\)
b)\(\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)
c)\(\sqrt{5-2\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left|\sqrt{5}-\sqrt{2}\right|=\sqrt{5}-\sqrt{2}\)
d)\(\sqrt{12+2.\sqrt{12}.\sqrt{5}+5}=\sqrt{\left(\sqrt{12}+\sqrt{5}\right)^2}=\left|\sqrt{12}+\sqrt{5}\right|=\sqrt{12}+\sqrt{5}=2\sqrt{3}+\sqrt{5}\)
e)\(\sqrt{18-2.3\sqrt{2}.1+1}=\sqrt{\left(3\sqrt{2}-1\right)^2}=\left|3\sqrt{2}-1\right|=3\sqrt{2}-1\)
h) \(\sqrt{12+2.\sqrt{12}.\sqrt{9}+9}=\sqrt{\left(\sqrt{12}+\sqrt{9}\right)^2}=\left|\sqrt{12}+\sqrt{9}\right|=\sqrt{12}+\sqrt{9}=2\sqrt{3}+3\)
a, ta có
\(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}< 3+4< 7\) (1)
lại có \(\sqrt{65}-1>\sqrt{64}-1>8-1>7\) (2)
từ (1) và(2) =>\(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)
bài 2
\(M=\sqrt{\frac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{\frac{2^{20}}{2^{12}}}=\sqrt{2^8}=2^4\)
a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-3+\sqrt{2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
c) \(\sqrt{25x^2}-2x=-5x-2x=-7x\)(vì x < 0)
d) \(x-5+\sqrt{25-10x+x^2}=x-5+\sqrt{\left(5-x\right)^2}=x-5+x-5=2x-10\) (vì x > 5)
a. 2\(\sqrt{3.16}\)+\(\sqrt{3.9}\)+\(\sqrt{3}\)
=2.4.\(\sqrt{3}\)+3\(\sqrt{3}\)+\(\sqrt{3}\)
12\(\sqrt{3}\)
a) \(A=\frac{1}{2}\sqrt{32}+\sqrt{98}-\frac{1}{6}\sqrt{18}=\frac{1}{2}\sqrt{4^2.2}+\sqrt{7^2.2}-\frac{1}{6}.\sqrt{3^2.2}\)
\(=\frac{1}{2}\sqrt{4^2}.\sqrt{2}+\sqrt{7^2}.\sqrt{2}-\frac{1}{6}.\sqrt{3^2}.\sqrt{2}\)\(=\frac{1}{2}.4\sqrt{2}+7\sqrt{2}-\frac{1}{6}.3.\sqrt{2}\)\(=2.\sqrt{2}+7\sqrt{2}-\frac{1}{2}\sqrt{2}=\left(2+7-\frac{1}{2}\right)\sqrt{2}=\frac{17}{2}\sqrt{2}\)
a) \(\sqrt{8-\sqrt{60}}\)=\(\sqrt{8-\sqrt{4.15}}\)=\(\sqrt{8-2\sqrt{15}}\)=\(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}\)=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)=l\(\sqrt{5}\)\(-\sqrt{3}\)l =\(\sqrt{5}\)\(-\sqrt{3}\)(do \(\sqrt{5}\)\(-\sqrt{3}\)>0)
\(\text{Đặt }A=\sqrt{4+\sqrt{10-2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10-2\sqrt{5}}\)
\(+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{16-10+2\sqrt{5}}=8+2\sqrt{6+2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}+1\right)^2}=8+2\left(\sqrt{5}+1\right)\)
\(=10+2\sqrt{5}\)
\(\Rightarrow A=\sqrt{10-2\sqrt{5}}\text{Hoặc }A=-\sqrt{10-2\sqrt{5}}\)
\(\text{Mà }A>0\text{ nên: }A=\sqrt{10-2\sqrt{5}}\)