K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên

0=−a+b0=−a+b

<−>a=b<−>a=b

Xét ptrinh hoành độ giao điểm

12x2=ax+a12x2=ax+a

<−>x2−2ax−2a=0<−>x2−2ax−2a=0

Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay

a2+2a=0a2+2a=0

<−>a(a+2)=0<−>a(a+2)=0

Vậy a=0a=0 hoặc a=−2a=−2

Do a≠0a≠0 nên a=−2a=−2.

Vậy y=−2x−2y=−2x−2

3 tháng 2 2021

1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)

\(\Rightarrow2x^2-ax-b=0\left(I\right)\)

Mà (P) tiếp xúc với d .

Nên PT ( I ) có duy nhất một nghiệm .

\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)

Lại có : d đi qua A .

\(\Rightarrow b+0a=-2=b\)

\(\Rightarrow a=4\)

2. Tương tự a

3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)

\(\Rightarrow2x^2-2m-1=0\)

Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)

=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)

12 tháng 6 2017

Bài 1:đường thẳng (d) là y= ax+b 

NHA MỌI NGƯỜI :>>

12 tháng 6 2017

Bài 1: đường thẳng (d) là y=ax+b

NHA MỌI NGƯỜI :>>

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

10 tháng 5 2020

Vì P đi qua điểm A 

Thay vèo ta cóa \(-1=a.4\Rightarrow a=-\frac{1}{4}\)

Ý b thiếu dữ kiện à bn ơi ?

í b thiếu dữ kiện

a: Thay x=0 và y=9 vào (d), ta được:

\(b+6\cdot0=9\)

hay b=9

Vậy: (d): y=6x+9

b: Phương trình hoành độ giao điểm là:

\(ax^2-6x-9=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)

Để (d) tiếp xúc với (P) thì 36a+36=0

hay a=-1

28 tháng 5 2022

`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`

`b)` Với `b=9=>(d):y=6x+9`

Xét ptr hoành độ của `(d)` và `(P)` có:

         `ax^2=6x+9`

`<=>ax^2-6x-9=0`       `(1)`

Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép

    `<=>\Delta' =0`

    `<=>(-3)^2-a.(-9)=0`

    `<=>a=-1` (t/m)