K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Gọi K là hình chiếu của A lên BC, I là hình chiếu của B lên AC

\(\Rightarrow\left\{{}\begin{matrix}AK\perp BC\\BI\perp AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AK}.\overrightarrow{BC}=\overrightarrow{0}\\\overrightarrow{BI}.\overrightarrow{AC}=\overrightarrow{0}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_K-x_A\right)\left(x_C-x_B\right)=0\\\left(y_K-y_A\right)\left(y_C-y_B\right)=0\\\left(x_I-x_B\right)\left(x_C-x_A\right)=0\\\left(y_I-y_B\right)\left(y_C-y_A\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}I\left(...\right)\\K\left(....\right)\end{matrix}\right.\)

Viết phương trình đường thẳng ua A và K; Viết phương trìn đường thẳng ua B và I.

Giao điểm của 2 đường thẳng đó chính là tọa độ trực tâm H

14 tháng 1 2021

bạn có thể giải tiếp ko?

23 tháng 1 2021

Giả sử trực tâm của tam giác ABC có tọa độ \(H\left(x;y\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{BC}=\left(6;-2\right)\\\overrightarrow{AH}=\left(x-1;y\right)\end{matrix}\right.\Rightarrow\overrightarrow{BC}\perp\overrightarrow{AH}\Leftrightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)

\(\Leftrightarrow6\left(x-1\right)-2y=0\)

\(\Leftrightarrow3x-y=3\left(1\right)\) 

Lại có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{CH}=\left(x-5;y+1\right)\end{matrix}\right.\Rightarrow\overrightarrow{AB}\perp\overrightarrow{CH}\Leftrightarrow\overrightarrow{CH}.\overrightarrow{AB}=0\)

\(\Leftrightarrow-2\left(x-5\right)+y+1=0\)

\(\Leftrightarrow-2x+y=-11\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-27\end{matrix}\right.\Rightarrow H\left(-8;-27\right)\)

26 tháng 12 2021

Cho mình hỏi cách tính vecto bc vs ạ mình cảm ơn

ko biết

1 tháng 5 2020

ko biết thua

4 tháng 1 2017

A B → = 3 ; 12 ,   A C → = 4 ; − 1 ⇒ ( A B )   ⃗ . ( A C )   ⃗ = 3 . 4 + 12 . ( - 1 ) = 0   ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:

\(\left\{ \begin{array}{l}\overrightarrow {AB}  = (2 - ( - 4);4 - 1) = (6;3)\\\overrightarrow {BC}  = (2 - 2; - 2 - 4) = (0; - 6)\\\overrightarrow {AC}  = (2 - ( - 4); - 2 - 1) = (6; - 3)\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {3^2}}  = 3\sqrt 5 \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{0^2} + {{( - 6)}^2}}  = 6\\AC = \left| {\overrightarrow {CA} } \right| = \sqrt {{6^2} + {{( - 3)}^2}}  = 3\sqrt 5 .\end{array} \right.\)

Áp dụng định lí cosin cho tam giác ABC, ta có:

\(\cos \widehat A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {3\sqrt 5 } \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( 6 \right)}^2}}}{{2.3\sqrt 5 .3\sqrt 5 }} = \frac{3}{5}\)\( \Rightarrow \widehat A \approx 53,{13^o}\)

\(\cos \widehat B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( 6 \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( {3\sqrt 5 } \right)}^2}}}{{2.6.3\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\)\( \Rightarrow \widehat B \approx 63,{435^o}\)

\( \Rightarrow \widehat C \approx 63,{435^o}\)

Vậy tam giác ABC có: \(a = 6;b = 3\sqrt 5 ;c = 3\sqrt 5 \); \(\widehat A \approx 53,{13^o};\widehat B = \widehat C \approx 63,{435^o}.\)

b)

Gọi H có tọa độ (x; y)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH}  = (x - ( - 4);y - 1) = (x + 4;y - 1)\\\overrightarrow {BH}  = (x - 2;y - 4)\end{array} \right.\)

Lại có: H là trực tâm tam giác ABC

\( \Rightarrow AH \bot BC\) và \(BH \bot AC\)

\( \Rightarrow \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = 0\) và \(\left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = 0\)

 

Do đó \(\overrightarrow {AH} .\overrightarrow {BC}  = \overrightarrow 0 \) và \(\overrightarrow {BH} .\overrightarrow {AC}  = \overrightarrow 0 \).

Mà:  \(\overrightarrow {BC}  = (0; - 6)\)

\( \Rightarrow (x + 4).0 + (y - 1).( - 6) = 0 \Leftrightarrow  - 6.(y - 1) = 0 \Leftrightarrow y = 1.\)

Và \(\overrightarrow {AC}  = (6; - 3)\)

\(\begin{array}{l} \Rightarrow (x - 2).6 + (y - 4).( - 3) = 0\\ \Leftrightarrow 6x - 12 + ( - 3).( - 3) = 0\\ \Leftrightarrow 6x - 3 = 0\\ \Leftrightarrow x = \frac{1}{2}.\end{array}\)

Vậy H có tọa độ \(\left( {\frac{1}{2}}; 1 \right)\)

15 tháng 5 2016

C A B 4 6 -1

Gọi \(\left(x_G;y_G\right)\) là tọa độ của G. Theo công thức tính trọng tâm tam giác, ta có :

\(\begin{cases}x_G=\frac{-1+4+0}{3}=1\\y_G=\frac{0+0+m}{3}=\frac{m}{3}\end{cases}\)

Vậy \(G\left(1;\frac{m}{3}\right)\)

\(\widehat{AGB}=90^0\Leftrightarrow\overrightarrow{BG}\perp AG\Leftrightarrow\overrightarrow{BG}.\overrightarrow{AG}=0\)  (1)

           \(\overrightarrow{BG}=\left(1-4;\frac{m}{3}-0\right)=\left(-3;\frac{m}{3}\right)\)

            \(\overrightarrow{AG}=\left(1+1;\frac{m}{3}-0\right)=\left(2;\frac{m}{3}\right)\)

\(\overrightarrow{BG}.\overrightarrow{AG}=\frac{m^2}{9}-6\)  (2)

Thay (2) vào (1) ta có : \(\widehat{AGB}=90^0\Leftrightarrow m^2=54\Leftrightarrow m=\pm3\sqrt{6}\)

Vậy có 2 giá trị cần tìm của m