\(\dfrac{1}{2}\)-\(\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

1,

\(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}...\dfrac{899}{30^2}\\ =\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}....\dfrac{29\cdot31}{30\cdot30}\\ =\left(\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot....\cdot30}\right)\cdot\left(\dfrac{3\cdot4\cdot5\cdot....\cdot31}{2\cdot3\cdot4.....\cdot30}\right)\\ =\dfrac{1}{30}\cdot\dfrac{31}{2}\\ =\dfrac{31}{60}\)

2,

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{37\cdot38\cdot39}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{37\cdot38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+....+\dfrac{1}{37\cdot38}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{4}-\dfrac{1}{3964}\\ =\dfrac{185}{741}\)

3, Làm tương tự, áp dụng ; \(\dfrac{n}{x\left(x+n\right)}=\dfrac{1}{x}-\dfrac{1}{x+n}\)

29 tháng 3 2017

\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)

\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)

\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)

29 tháng 3 2017

Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)

...

\(\dfrac{1}{299}>\dfrac{1}{300}\)

Do đó :

\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)

Vậy...

12 tháng 3 2017

Bài 2:

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

Vậy A < 2

Bài 3:

D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)

\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)

Bài 4:

A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)

\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)

\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)

17 tháng 4 2018

Violympic toán 6

21 tháng 3 2017

2) Tinh nhanh:

a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)

= \(\dfrac{5}{598}\)

21 tháng 3 2017

b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)

= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)

= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)

27 tháng 7 2017

Các bạn ơi,mình ghi thiếu,còn 3 câu nữa nha!!!~~nya

e)| \(\dfrac{5}{2}\)x-\(\dfrac{1}{2}\) |-(-22).\(\dfrac{1}{3}\)(0,75-\(\dfrac{1}{7}\))=\(\dfrac{-5}{13}\):2\(\dfrac{9}{13}\)-0,5.(\(\dfrac{-2}{3}\))

f)| 5x+21 | = | 2x -63 |

g) -45 - |-3x-96 | - 54=-207

Làm ơn giúp mình với ạ!Mình đang cần gấp lắm trong ngày hôm nay ạ!!!Mình xin cảm ơn các bạn nhiều nhiều lắm luôn đó!!!Thank you very much!!!(^-^)

1 tháng 8 2017

a, (\(\dfrac{2}{9}\)(6x - \(\dfrac{3}{4}\)) - 3(\(\dfrac{1}{4}x-\dfrac{1}{5}\)) = \(\dfrac{-8}{15}\)

<=> (\(\dfrac{4}{3}x-\dfrac{1}{6}\)) - (\(\dfrac{3}{4}x-\dfrac{3}{5}\)) = \(\dfrac{-8}{15}\)

<=> \(\dfrac{4}{3}x-\dfrac{1}{6}-\dfrac{3}{4}x+\dfrac{3}{5}=\dfrac{-8}{15}\)

<=> \(\dfrac{7}{12}x+\dfrac{13}{30}=\dfrac{-8}{15}\)

<=> \(\dfrac{7}{12}x=\dfrac{-8}{15}-\dfrac{13}{30}\)

<=> \(\dfrac{7}{12}x=-\dfrac{29}{30}\)

<=> x = \(-\dfrac{58}{35}\)
@Nguyễn Gia Hân

16 tháng 4 2017

1) \(19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12}\)

\(=\dfrac{157}{8}\cdot\dfrac{12}{7}-\dfrac{61}{4}\cdot\dfrac{12}{7}\\ =\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)\\ =\dfrac{12}{7}\cdot\dfrac{35}{8}\\ =\dfrac{15}{2}\)

2) \(\dfrac{2}{5}\cdot\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}\cdot\dfrac{1}{3}\)

\(=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}\cdot5\\ =\dfrac{1}{3}\cdot1-\dfrac{2}{3}\\ =\dfrac{1}{3}-\dfrac{2}{3}\\ =-\dfrac{1}{3}\)

3) \(\dfrac{4}{9}\cdot19\dfrac{1}{3}-\dfrac{4}{9}\cdot39\dfrac{1}{3}\)

\(=\dfrac{4}{9}\left(19\dfrac{1}{3}-39\dfrac{1}{3}\right)\\ =\dfrac{4}{9}\cdot\left(\dfrac{58}{3}-\dfrac{118}{3}\right)\\ =\dfrac{4}{9}\cdot\left(-20\right)\\ =-\dfrac{80}{9}\)

13 tháng 6 2018

Dấu " / " là phân số nhé

a) 5/-4 . 16/25 + -5/4 . 9/25

= -5/4 . 16/25 + -5/4 . 9/25

= -5/4 . ( 16/25 + 9/25 )

= -5/4 . 1

= -5/4

b) 4 11/23 - 9/14 + 2 12/23 - 5/4

= 103/23 - 9/14 + 58/23 - 5/4

= 103/23 + 58/23 - 9/14 - 5/4

= 7 - 9/14 - 5/4

= 143/28

c) 2 13/27 - 7/15 + 3 14/27 - 8/15

= 67/27 - 7/15 + 95/27 - 8/15

= 67/27 + 95/27 - 7/15 - 8/15

= 6 - 7/15 - 8/15

= 5

1 tháng 6 2017

S = \(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+...+\(\dfrac{1}{2002.2005}\)

S = ( 1 - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-...+\(\dfrac{1}{2002}\)-\(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = ( 1 - \(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = \(\dfrac{2004}{2005}\). \(\dfrac{1}{3}\)

S = \(\dfrac{2014}{6015}\)

1 tháng 6 2017

a) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2002.2005}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}.\dfrac{2004}{2005}=\dfrac{668}{2005}\)

KL.

b) \(P=\dfrac{3}{1.6}+\dfrac{3}{6.11}+\dfrac{3}{11.16}+...+\dfrac{3}{96.101}\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}.\dfrac{100}{101}=\dfrac{60}{101}\)

KL.

c) \(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(=\dfrac{1}{2}.\dfrac{1}{19800}=\dfrac{1}{39600}\)

KL.

22 tháng 4 2018

giúp mình đi mà ToT khocroi