Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F=(6/8+1)(6/18+1)(6/30+1)...(6/10700+1)
14.24.36...10706
F= ---------------------------
8.18.30....10700
7.2.8.3.9.4...106.101
F= -----------------------------------
8.1.9.2.10.3...107.100
(7.8.9....106)(2.3.4...101)
F= ----------------------------------------
(8.9.10...107)(2.3.4...100)
7.101
F= ----------
107
F=1
Mình nhầm nhé! Bạn để nguyên:
F =707/101 là được rồi
K mình nhé!
\(B=-\frac{1}{3}+\frac{2}{5}-\frac{2}{3}-\frac{3}{5}+\frac{1}{5}\)
\(=\left(-\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{2}{5}-\frac{3}{5}+\frac{1}{5}\right)\)
\(=-\frac{3}{3}+0\)
\(=-1\)
=.= hk tốt!!
B=\(\frac{-4}{12}+\frac{18}{45}+\frac{-6}{9}+\frac{-21}{35}+\frac{6}{30}\)
=\(\frac{-4}{4\cdot3}+\frac{2\cdot9}{5\cdot9}+\frac{\left(-2\right)\cdot3}{3\cdot3}+\frac{\left(-4\right)\cdot7}{5\cdot7}+\frac{6}{5\cdot6}\)
=\(\frac{-1}{3}+\frac{2}{5}+\frac{-2}{3}+\frac{-4}{5}+\frac{1}{5}\)
= \(\left(\frac{-1}{3}+\frac{-2}{3}\right)+\left(\frac{-4}{5}+\frac{2}{5}+\frac{1}{5}\right)\)
=\(\frac{-3}{3}+\frac{-1}{5}\)
= \(-1+\frac{-1}{5}\)=\(\frac{-5-1}{5}=\frac{-6}{5}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}\)
\(A=\frac{3}{8}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
mình nhé!
\(\text{ta có:}\frac{6}{a\left(a+7\right)}+1=\frac{\left(a+1\right)\left(a+6\right)}{a\left(a+7\right)}\text{ do đó:}A=\frac{2.7}{1.8}.\frac{3.8}{2.9}.....\frac{101.106}{100.107}\)
\(=\frac{2.3...101.\left(7.8....106\right)}{1....101.\left(8.9.....107\right)}=\frac{7}{107}\)