K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)

\(=\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).\left(\frac{1}{6}-\frac{1}{6}\right)\)

\(=\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).0=0\)

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

21 tháng 6 2015

\(\frac{2}{3}+\frac{1}{3}=\frac{6+3}{3}=\frac{9}{3}=3\)

\(\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{1}{2}=1+\frac{1}{2}=1\frac{1}{2}=\frac{3}{2}\)

\(\frac{4}{5}+\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=\left(\frac{4}{5}+\frac{1}{5}\right)+\left(\frac{3}{5}+\frac{2}{5}\right)=2+2=4\)

\(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\left(\frac{5}{6}+\frac{1}{6}\right)+\left(\frac{4}{6}+\frac{2}{6}\right)+\frac{1}{2}=1+1\)\(+\frac{1}{2}=2\frac{1}{2}=\frac{5}{2}\)

27 tháng 2 2017

ngu  LÊ MĨ LINH

theo thứ tự :1,6/4 =1 và 1/2,2,5/2,500

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)

31 tháng 8 2020

1) \(\frac{3^{2014}.8^{19}}{6^{60}.3^{1955}}=\frac{3^{2014}.\left(2^3\right)^{19}}{\left(2.3\right)^{60}.3^{1955}}=\frac{3^{2014}.2^{57}}{2^{60}.3^{2015}}=\frac{1}{2^3.3}=\frac{1}{24}\)

2) \(5^x+5^{x+1}=150\)

=> 5x(1 + 5) = 150

=> 5x.6 = 150

=> 5x = 25

=> \(x=\pm2\)

3) \(\frac{3}{11.16}+\frac{3}{16.21}+...+\frac{3}{61.66}=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)

\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{3}{5}.\frac{5}{66}=\frac{1}{22}\)

31 tháng 8 2020

cảm ơn bạn Xyz đã trả lời