Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
\(\frac{2}{3}+\frac{1}{3}=\frac{6+3}{3}=\frac{9}{3}=3\)
\(\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{1}{2}=1+\frac{1}{2}=1\frac{1}{2}=\frac{3}{2}\)
\(\frac{4}{5}+\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=\left(\frac{4}{5}+\frac{1}{5}\right)+\left(\frac{3}{5}+\frac{2}{5}\right)=2+2=4\)
\(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\left(\frac{5}{6}+\frac{1}{6}\right)+\left(\frac{4}{6}+\frac{2}{6}\right)+\frac{1}{2}=1+1\)\(+\frac{1}{2}=2\frac{1}{2}=\frac{5}{2}\)
ngu LÊ MĨ LINH
theo thứ tự :1,6/4 =1 và 1/2,2,5/2,500
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
1) \(\frac{3^{2014}.8^{19}}{6^{60}.3^{1955}}=\frac{3^{2014}.\left(2^3\right)^{19}}{\left(2.3\right)^{60}.3^{1955}}=\frac{3^{2014}.2^{57}}{2^{60}.3^{2015}}=\frac{1}{2^3.3}=\frac{1}{24}\)
2) \(5^x+5^{x+1}=150\)
=> 5x(1 + 5) = 150
=> 5x.6 = 150
=> 5x = 25
=> \(x=\pm2\)
3) \(\frac{3}{11.16}+\frac{3}{16.21}+...+\frac{3}{61.66}=\frac{3}{5}\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
\(=\frac{3}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)=\frac{3}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{3}{5}.\frac{5}{66}=\frac{1}{22}\)
\(\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).\left(\frac{1}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).0=0\)