\(\frac{x-18}{x+4}=\frac{x-17}{x+16}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(\frac{x-18}{x+4}=\frac{x-17}{x+16}\)

\(\Rightarrow\left(x-18\right).\left(x+16\right)=\left(x+4\right).\left(x-17\right)\)

\(x^2+16x-18x-288=x^2-17x+4x-68\)

\(x^2-2x-288=x^2-13x-68\)

\(\Rightarrow x^2-2x-x^2+13x=-68+288\)

\(11x=220\)

x = 220:11

x = 20

29 tháng 6 2018

      x - 18 / x + 4 = x -17 / x + 16

   <=> (x-18) . ( x+ 16) = (x+4) . (x-17)

<=> x2 + 16x - 18x -288 = x2 -17x + 4x -68

<=>x2 - 2x -288 = x2 -13x -68

<=> x2 - x2 -2x + 13x = 288 - 68

<=> 11x = 220 => x =  20 

vậy x= 20 

chúc bạn hok tốt và nhớ ủng hộ mik nha

          

6 tháng 10 2020

a)\(\frac{x}{27}=\frac{-2}{3,6}\)

=>x.3,6=27.(-2)

=>x.3,6=-54

=>x=-15

b)-0,52:x=-9,36:16,38

=>-0,52:x=-4/7

=>x=0,91

c)\(\frac{4\frac{1}{4}}{2\frac{7}{8}}=\frac{x}{1,61}\)

=>\(2\frac{7}{8}.x=4\frac{1}{4}.1,61\)

=>\(2\frac{7}{8}.x=\frac{2737}{400}\)

=>x=\(\frac{119}{50}\)

6 tháng 10 2020

a,\(\frac{x}{27}=-\frac{2}{3,6}\)

\(\Leftrightarrow x.3,6=27.-2\)

\(\Leftrightarrow x.3,6=-54\)

\(\Leftrightarrow x=-15\)

b,\(-0,52\div x=-9,36\div16,38\)

\(\Leftrightarrow-0,52\div x=-\frac{4}{7}\)

\(\Leftrightarrow x=\frac{91}{100}\)

c,\(\frac{4\frac{1}{4}}{2\frac{7}{8}}=\frac{x}{1,61}\)

\(\Leftrightarrow\frac{4,25}{2,875}=\frac{x}{1,61}\)

\(\Leftrightarrow x.2,875=4,25.1,61\)

\(\Leftrightarrow x.2,875=6,8425\)

\(\Leftrightarrow x=2,38\)

 

Bài làm

1. \(\left(-\frac{2}{3}\right)^4.9^2\)

\(=\frac{16}{81}.81\)

\(=16\)

2. \(x^4=\frac{16}{625}\)

=>\(x^4=\left(\frac{2}{5}\right)^4\)

=> \(x=\frac{2}{5}\)

Vậy \(x=\frac{2}{5}\)

# Học tốt #

18 tháng 9 2019

Bài 1:

\(\left(-\frac{2}{3}\right)^4.9^2=\frac{\left(-2\right)^4}{3^4}.\left(3^2\right)^2=\frac{2^4}{3^4}.3^4=2^4=16\)

Bài 2:

\(x^4=\frac{16}{625}\Leftrightarrow x^4=\frac{4^4}{5^4}\Leftrightarrow x^4=\left(\frac{4}{5}\right)^4\)

\(\Rightarrow x=\frac{4}{5}\)hoặc\(x=-\frac{4}{5}\)

Vậy........

4 tháng 7 2019

Lời giải :

Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)

Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)

Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)

\(\Leftrightarrow3x-2z=-56\)

\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)

\(\Leftrightarrow k=\frac{-560}{51}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)

\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

11 tháng 10 2020

Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)

\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)

11 tháng 10 2020

bn làm đúng rồi nhá và 1 k cho bạn

\(a;0,25-\frac{1}{2}\left|1,5-x\right|=2,5\)

\(\Leftrightarrow\frac{1}{2}\left|1,5-x\right|=0,25-2,5\)

\(\Leftrightarrow\frac{1}{2}\left|1,5-x\right|=-2,25\)

\(\Leftrightarrow\left|1,5-x\right|=-2,25\cdot2=-4,5\)

Mà \(\left|1,5-x\right|\ge0\)Nên suy ra |1,5-x|=-4,5 là vô lý

\(b;\left|x+\frac{1}{6}\right|\cdot0,75+\frac{1}{4}=2\frac{1}{3}\)

\(\Leftrightarrow\left|x+\frac{1}{6}\right|\cdot\frac{3}{4}=\frac{7}{3}-\frac{1}{4}\)

\(\Leftrightarrow\left|x+\frac{1}{6}\right|\cdot\frac{3}{4}=\frac{25}{12}\)

\(\Leftrightarrow\left|x+\frac{1}{6}\right|=\frac{25}{12}\cdot\frac{4}{3}\)

\(\Leftrightarrow\left|x+\frac{1}{6}\right|=\frac{25}{9}\Leftrightarrow x+\frac{1}{6}=\pm\frac{25}{9}\)

TH1:\(x+\frac{1}{6}=\frac{25}{9}\)

\(\Leftrightarrow x=\frac{25}{9}-\frac{1}{6}=\frac{47}{18}\)

TH2:\(x+\frac{1}{6}=-\frac{25}{9}\)

\(\Leftrightarrow x=-\frac{25}{9}-\frac{1}{6}=\frac{-53}{18}\)

Vậy \(x=\frac{47}{18};-\frac{53}{18}\)