K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

\(a,\text{ }4n+2⋮2n+6\)

\(\Rightarrow4n+2+10-10⋮2n+6\)

\(\Rightarrow4n+12-10⋮2n+6\)

\(\Rightarrow2\left(2n+6\right)-10⋮2n+6\)

      \(2\left(2n+6\right)⋮2n+6\)

\(\Rightarrow10⋮2n+6\)

\(\Rightarrow2n+6\inƯ\left(10\right)\)

\(\Rightarrow2n+6\in\left\{-1;1;-2;2;-5;5;-10;10\right\}\)

\(\Rightarrow2n\in\left\{-7;-5;-8;-4;-11;-1;-16;4\right\}\)

\(\Rightarrow n=2\)

b, 3n chia hết cho n 

=> 38 chia hết cho n

=> n là ước tự nhiên của 38

27 tháng 6 2018

Tôi đồng ý như cách làm của bạn Nguyễn Phương Uyên

4 tháng 2 2016

{1;2;3;6} , ủng hộ giùm mk nha

4 tháng 2 2016

n = 1;2;3 6

mik ko chắc lắm

13 tháng 10 2019

a, \(n+8⋮n\)

\(\Rightarrow8⋮n\)(vì \(n⋮n\))

\(\Rightarrow n\inƯ\left(8\right)\)

\(\Rightarrow n\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

b, \(3n+5⋮n\)

\(\Rightarrow5⋮n\)(vì \(3n⋮n\))

\(\Rightarrow n\inƯ\left(5\right)\)

\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)

c, \(n+7⋮n+1\)

\(\Rightarrow\left(n+1\right)+6⋮n+1\)

\(\Rightarrow6⋮n+1\)(vì \(n+1⋮n+1\))

\(\Rightarrow n+1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow n\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)

Hok tốt nha^^

7 tháng 7 2015

Mình làm vd 2 bài nha:

a) n+6 chia hết cho n+2

n+2 chia hết cho n+2

nên (n+6)-(n+2) chia hết cho n+2

4 chia hết cho n-2

=> n-2 = 1;-1;2;-2;4;-4

=> n=3;1;4;0;6

d) n^2 +4 chia hết cho 4

n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1

=> (n^2+2n+1)-(n^2+4) chia hết cho n-1

=> 2n+1-4 chia hết cho n-1

=> 2n - 3 chia hết cho n-1

 n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1

=> (2n-2)-(2n-3) chia hết cho n-1

=> 1 chia hết cho n-1

=> n-1 = 1;-1

=> n=0

7 tháng 7 2015

Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

Để \(n^2+2n+7⋮n+2\)

\(\Rightarrow n\left(n+2\right)+7⋮n+2\)

Vì \(n\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)\Rightarrow n+2\in\left\{1;7\right\}\Rightarrow n\in\left\{-1;5\right\}\)

Để \(n^2+1⋮n-1\)

=> \(n^2-1+2⋮n-1\)

\(\Rightarrow\left(n^2-n+n-1\right)+2⋮n-1\)

\(\Rightarrow\left[n\left(n-1\right)+\left(n-1\right)\right]+2⋮n-1\)

=> (n - 1)(n + 1) + 2\(⋮n-1\)

Vì (n - 1)(n + 1) \(⋮n-1\)

=> 2\(2⋮n-1\Rightarrow n-1\inƯ\left(2\right)\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\)

Để \(n^2+2n+6⋮n+4\)

=> \(n^2+4n-2n-8+14⋮n+4\)

=> \(n\left(n+4\right)-2\left(n+4\right)+14⋮n+4\)

=> \(\left(n-2\right)\left(n+4\right)+14⋮n+4\)

Vì \(\left(n-2\right)\left(n+4\right)⋮n+4\)

=> \(14⋮n+4\Rightarrow n+4\inƯ\left(14\right)\Rightarrow n+4\in\left\{1;2;7;14\right\}\Rightarrow n\in\left\{-3;-2;3;10\right\}\)

Để n2 + n + 1 \(⋮n+1\)

 => \(n\left(n+1\right)+1⋮n+1\)

Vì \(n\left(n+1\right)⋮n+1\)

=> \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)\Rightarrow n+1=1\Rightarrow n=0\)

3 tháng 10 2021

a, n=5+5=10 chia hết cho 5

b, n=3+7:3+2 chia hết cho 5

còn lại mình chịu

15 tháng 10 2018

a,  2n + 7 chia hết cho n + 2 

\(\Rightarrow2n+4+3⋮n+2\)

\(\Rightarrow2\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)

+> n = -1 ; 1 ; 3 ; -3 

b, 3n + 10 chia hết cho n - 3

\(\Rightarrow3n-3+13⋮n-3\)

mà : \(3n-3⋮n-3\)

\(\Rightarrow13⋮n-3\)

\(\Rightarrow n-3\inƯ\left(13\right)=\left\{1;-1;13;-13\right\}\)

Với :  n- 3 = 1 => n = 4

Với : n -3 = -1 => n = 2

với : n - 3 = 13 => n = 16

Với : n - 3  = -13 => n = -10 

=> n = { 4 ; 2 ; 16 ; -10 }

.................

=> n = {2 ; 0 ;

28 tháng 11 2015

n + 4 chia hết cho n - 1

=> ( n - 1 ) + 5 chia hết cho n - 1

Mà n - 1 chia hết cho n - 1

=> 5 chia hết cho n - 1

=> n -1 thuộc Ư(5) = { 1 ; 5 }

=> n thuộc { 2 ; 6 }

Thì cứ giải từng con1 ùi lik-e cho