Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: |x - 2018| + |2019 - x| ≥ |x - 2018 + 2019 - x| = |1| = 1
Dấu " = " xảy ra <=> (x - 2018)(2019 - x) ≥ 0
Th1: \(\hept{\begin{cases}x-2018\text{ }\ge0\\2019-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge2018\\x\le2019\end{cases}}\)
Th2: \(\hept{\begin{cases}x-2018\text{ }\le0\\2019-x\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le2018\\x\ge2019\end{cases}}\)(Vô lý)
Vậy GTNN |x - 2018| + |2019 - x| = 1 khi 2018 ≤ x ≤ 2019
\(C=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
Vì \(\left|x-2017\right|\ge0;\forall x\)
\(\Rightarrow\left|x-2017\right|+2019\ge2019;\forall x\)
\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019};\forall x\)
\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019};\forall x\)
\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge\frac{2018}{2019};\forall x\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2017\right|=0\)
\(\Leftrightarrow x=2017\)
Vậy \(C_{min}=\frac{2018}{2019}\)\(\Leftrightarrow x=2017\)
Ta có : (x-2019)2018 luôn lớn hơn hoặc bằng 0 nên M sẽ luôn lớn hơn hoặc bằng 2018.Vậy giá trị nhỏ nhất của M là 2018
\(M=2018+\left(x-2019\right)^{2018}\ge2018\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-2019\right)^2=0\)\(\Leftrightarrow\)\(x=2019\)
Vậy GTNN của \(M\) là \(2018\) khi \(x=2019\)
tym tym :>
sssongokusss: bạn thông minh nhỉ? thống kê hỏi đáp toàn trả lời linh tinh, hơn mấy trăm điểm SP tụt xuống âm hơn trăm điểm
Ta có x = 2018
=> x + 1 = 2019
\(x^5-2019.x^4+2019.x^3-2019.x^2+2019.x-2020\)
\(=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-2020\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-2020\)
\(=x-2020\)
Thay x = 2018 vào biểu thức , ta được
\(2018-2020=-2\)
Vậy giá trị biểu thức là -2
\(E=\left|x-1\right|+\left|x-9\right|\)
\(E=\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)
Min E = 8
\(\Leftrightarrow1\le x\le9\)