K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

A=2(x^2+3x+9/4)-3/2

A=2(x+3/2)^2-3/2>-3/2

27 tháng 10 2019

\(A=2x^2+6x+3\)

\(=2\left(x^2+3x+\frac{3}{2}\right)\)

\(=2\left(x^2+3x+\frac{9}{4}-\frac{3}{4}\right)\)

\(=2\left[\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\right]\)

\(=2\left[\left(x+\frac{3}{2}\right)^2\right]-\frac{3}{2}\ge\frac{-3}{2}\)

Vậy \(A_{min}=\frac{-3}{2}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

13 tháng 12 2018

\(A=\frac{3x^2-6x+9}{x^2-2x+3}=3\)

12 tháng 2 2019

1,\(A=2x^2-6x+7\)

   \(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)

   \(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

Dấu "=" khi \(x=\frac{3}{2}\)

2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)

\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)

\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1) 

*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)

                                \(\Leftrightarrow2x-3=0\)

                                \(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)

*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B

Pt (1) có nghiệm khi \(\Delta\ge0\)

                          \(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)

                           \(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)

                           \(\Leftrightarrow B\ge1\)

Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)

                                        \(\Leftrightarrow-\left(x-2\right)^2=0\)

                                        \(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)

Thấy 1 < 2 nên BMin = 1<=> x = 2

Vậy ....

12 tháng 2 2019

A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1

Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0

Nên:A\(\ge\) -1

B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\)  -3

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

7 tháng 5 2019

a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)

\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

Giải phương trình : 

\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)

\(\Rightarrow40+12-8x\ge5x-15-20x\)

\(\Rightarrow7x=67\)

\(\Rightarrow x\ge\frac{67}{7}\)

7 tháng 5 2019

b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)

\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)

\(\Rightarrow6x+3-2x+4>-54\)

\(\Rightarrow4x>-61\)

\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)

Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)

\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)

\(\Rightarrow12x-3x+9\ge36-x+3\)

\(\Rightarrow10x\ge30\)

\(\Rightarrow x\ge3\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)

Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình