K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Bài làm:

Ta có: \(2\sin^2\alpha+\cot^2\alpha.\sin^2\alpha+\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)+\frac{\cos^2\alpha}{\sin^2\alpha}\cdot\sin^2\alpha+\sin^2\alpha\)

\(=1+\cos^2\alpha+\sin^2\alpha\)

\(=1+1=2\)

30 tháng 8 2020

\(A=sin^2a+cos^2a+\left(tana\cdot cota\right)^2\)  

\(=1+1^2\)   

\(=1+1=2\)

M
30 tháng 8 2020

\(A=\sin^2a+\tan^2a.\cot^2a+\cos^2a\)

   \(=1+1^2\)

   \(=1+1\)

   \(=2\)

18 tháng 8 2021

a) \(\dfrac{2sina+3cosa}{3sina-4cosa}=\dfrac{9}{5}\)

b) \(\dfrac{sina.cosa}{sin^2a-sina.cosa+cos^2a}=0\)

18 tháng 8 2021


\(a.\dfrac{2\sin\alpha+3\cos\alpha}{3\sin\alpha-4\cos\alpha}=\dfrac{2\left(3cos\alpha\right)+3cos\alpha}{3\left(3cos\alpha\right)-4cos\alpha}=\dfrac{9cos\alpha}{5cos\alpha}=\dfrac{9}{5}\)
\(b.\dfrac{sin\alpha cos\alpha}{sin^2\alpha-sin\alpha cos\alpha+cos^2\alpha}=\dfrac{3cos^2\alpha}{9cos^2\alpha-3cos^2\alpha+cos^2\alpha}=\dfrac{3cos^2\alpha}{7cos^2\alpha}=\dfrac{3}{7}\)

25 tháng 9 2019

a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2

b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2

c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1

d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2

21 tháng 6 2015

a. cos\(\alpha\)-sin\(\alpha\)

b. 1/cos\(\alpha\)

30 tháng 8 2020

Cái này mình vừa làm ban nãy rồi mà-.-

Ta có: \(2\sin^2\alpha+\cot^2\alpha\cdot\sin^2\alpha+\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)+\left(\sin^2\alpha+\frac{\cos^2\alpha}{\sin^2\alpha}\cdot\sin^2\alpha\right)\)

\(=1+\left(\sin^2\alpha+\cos^2\alpha\right)\)

\(=1+1=2\)

31 tháng 8 2017

tui rất thích lượng giác:

a) = s2 + 2s.c +c2 +s2- 2s.c + c2 =1+1=2

b) = s.c(s/c + c/s) = s.c(s2 + c2) / s.c = 1

.............................bài nào cx dễ

( k có việc j khó, chỉ sợ lòng k bền....)