\(A=2^{2017}-\left(2^{2016}+2^{2015}+...+2^1+2^0\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

\(A=2^{2017}-(2^{2016}+2^{2015}+......+2^1+2^0)\)

Đặt \(B=2^{2016}+2^{2015}+.....+2^1+2^0\)

\(\Rightarrow2B=2^{2017}+2^{2016}+....+2^1+2^0\)

\(\Rightarrow2B-B=(2^{2017}+2^{2016}+...+2^0)-(2^{2016}+2^{2015}+...+2^1+2^0)\)

\(\Rightarrow B=2^{2017}-2^0\)

\(\Rightarrow A=2^{2017}-(2^{2017}-1)\)

\(\Rightarrow A=1\)

28 tháng 7 2018

2A = 22018 - (22017 + 22016 + ....+ 21)

2A - A = [22018 - (22017 + 22016 + ....+ 21 )] - [22017 - (22016 + 22015 +..... + 2+ 20)

A = 22018  -  22017 - 22017 - 1 

A = 22018 - (22017 +22017 +1)

A = 22018 - (22018 +1 )

A = -1

21 tháng 9 2018

\(A=4^{2017}+4^{2016}+...+4^2+4+1\)

\(4A=4^{2018}+4^{2017}+...+4^3+4^2+4\)

\(4A-A=\left(4^{2018}+4^{2017}+...+4^3+4^2+4\right)-\left(4^{2017}+...+4+1\right)\)

\(3A=4^{2018}-1\)

\(A=\frac{4^{2018}-1}{3}\)

19 tháng 3 2019

Ta có: \(D=2016\left(1-\frac{2}{3}\right)\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{2}{2017}\right)\)

\(=2016.\frac{1}{3}.\frac{3}{5}.\frac{5}{7}...\frac{2015}{2017}\)\(=2016.\left(\frac{1}{3}.\frac{3}{5}.\frac{5}{7}...\frac{2015}{2017}\right)\)

\(=2016\left(\frac{1.3.5.7...2015}{3.5.7....2015.2017}\right)\)\(=2016.\frac{1}{2017}=\frac{2016}{2017}\)

                                                        Vậy \(D=\frac{2016}{2017}\)

27 tháng 4 2019

\(B=\frac{2018+2019}{2019+2020}\)

\(\Rightarrow B=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)

\(\Rightarrow B< \frac{2018}{2019}+\frac{2019}{2020}=A\)

Vậy B < A

27 tháng 4 2019

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow B< \frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}=A\)

Vậy B < A

1 tháng 5 2018

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

14 tháng 6 2018

Ta có : 

\(\frac{1}{2009}A=\frac{2009^{2017}+1}{2009^{2017}+2009}=\frac{2009^{2017}+2009}{2009^{2017}+2009}-\frac{2008}{2009^{2017}+2009}=1-\frac{2008}{2009^{2017}+2009}< 1\)

\(\frac{1}{2009}B=\frac{2009^{2018}-2}{2009^{2018}-4018}=\frac{2009^{2018}-4018}{2009^{2018}-4018}+\frac{4016}{2009^{2018}-4018}=1+\frac{4016}{2009^{2018}-4018}>1\)

\(\Rightarrow\)\(A< 1< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

14 tháng 6 2018

Vi 2009^2017 + 1 / 2009^2016 + 1 > 1

nen 2009^2018 + 1 / 2009^2016 + 1 < 2009^2018 + 1 - 3 / 2009^2016 + 1 - 3 = 2009^2018 - 2 / 2009^2017 - 2

Vay ...

Xem trong vo bai tap co may bai tuong tu de on tap do ban

Nguyễn Châu Tuấn Kiệt ông có thể giúp tui bài này đc ko

19 tháng 3 2019

bài này tôi đăng lên rroif mà chẳng ai bít mà trả lời