Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo đề: \(\left|x-2y\right|=5\)
\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )
\(x-2y=-5\) (nếu \(x< 2y\) )
Vậy có hai trường hợp
TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)
TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)
b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)
Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)
\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)
c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
= \(\frac{2x+2y+2z}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x
=> y + z + x + 1 = 3x
=> 1/2 + 1 = 3x
=> 3/2 = 3x
=> x = 3/2 : 3 = 1/2
=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y
=> x + z + y + 2 = 3y
=> 1/2 + 2 = 3y
=> 5/2 = 3y
=> y = 5/2 : 3 = 5/6
=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z
=> x + y + z - 3 = 3z
=> 1/2 - 3 = 3z
=> 3z = -5/2
=> z = -5/2 : 3 = -5/6
Vậy ...
t 27 tháng 7 2017 lúc 13:57
2x/3 =3y/4 =4z/5 ⇒60.2x/3 =60.3y/4 =60.4z/5 ⇒40.x=45.y=48.z
40.x = 45.y => x/45 = y/40 => x/9 = y/8 => x/18=y/16 [1]
45.y = 48.z => y/48 = z/45 => y/16 = z/15 [2]
Từ [1] và [2] => x/18 = y/16 = z/15 = [x+y+z]/[18+16+15] = 49/49 = 1
=> x= 18 ; y= 16 ; z= 15
Vậy x= 18 ; y= 16 ; z= 15
\(\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{t}{\frac{1}{5}}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{t}{\frac{1}{5}}=\frac{x+y+z+t}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{77}{\frac{77}{60}}=60\)
Suy ra :
\(\frac{x}{\frac{1}{2}}=60\Rightarrow x=30\)
\(\frac{y}{\frac{1}{3}}=60\Rightarrow y=20\)
\(\frac{z}{\frac{1}{4}}=60\Rightarrow z=15\)
\(\frac{t}{\frac{1}{5}}=60\Rightarrow t=12\)
Vậy \(x=30;y=20;z=15;t=12\)
Chúc bạn học tốt !!!
a) 3x - / 2x + 1/=2
Ta co: /2x+1/ lon hon hoac bang 0
ma 3x- / 2x+1/ = 2
=> 3x la so tu nhien
=>3x-/2x+1/ = 3x - 2x+1 = 2
=>3x - 2x = 1
=>x(3-2) = 1
=>x . 1 = 1
=> x=1
KL........\
Tich cho minh nhe ! Cau b dang suy nghi .
a) Ta co: /2x+1/ lon hon hoac bang 0
ma 3x - /2x+1/ = 2
=> 3x la so tu nhien
=> 3x - /2x+1/ = 3x -2x +1 = 2\
=> 3x -2x =1
=>x=1
tick cho minh nha!!!!! Thank you nhieuuuuuuuuu !!!!
ta có:\(\frac{7}{2x+2}=\frac{3}{2y-4}\)=\(\frac{5}{z+4}\)=\(\frac{7+3}{2x+2+2y-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-2}=\frac{5}{x+y-1}\)\(=\frac{5+5}{x+y+z-1+4}\)=\(\frac{10}{17-1+4}=\frac{10}{20}\)=\(\frac{1}{2}\)
từ đó bn tính ra nha
Ta có: xy + 2x - y = 5
=> ( xy + 2x ) = 5 + y
=> x( y + 2 ) = y + 5
\(\Rightarrow x=\frac{y+5}{y+2}\) ( * )
Vì \(x\inℤ\)
\(\Rightarrow\frac{y+5}{y+2}\inℤ\) \(\left(y\ne-2\right)\)
\(\Rightarrow y+5⋮y+2\)
=> (y + 2) + 3 \(⋮\)y + 2
=> 3 \(⋮\)y+2 ( vì y+2 \(⋮\)y+2 )
=> y + 2 \(\in\)Ư(3) = { -3; -1; 1; 3 }
=> y \(\in\){ -5; -3; -1; 1 }
Thay các giá trị của y vào ( * ); ta có:
+) với y= -5 => x = 0
+) với y= -3 => x = -2
+) với y = -1 => x = 4
+) với y = 1 => x = 2
Vậy:....
Cách giải khác (à mà đề nó sai sai sao ấy)
\(xy+2x-y=5\Leftrightarrow x\left(y+2\right)-y=5\)
\(\Leftrightarrow x\left(y+2\right)=5+y\Leftrightarrow x=\frac{5+y}{y+2}\)
Lại có: \(x=\frac{5+y}{y+2}=\frac{y+2+3}{y+2}=1+\frac{3}{y+2}\) (1)
Do đó để x thuộc Z thì \(\frac{3}{y+2}\inℤ\Rightarrow y+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\) (2)
Từ (1) và (2), ta có bảng: