K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

\(4^x+80=5^y\left(1\right)\)

+) Với \(x=0\)thay vào (1) ta được :

\(4^0+80=5^y\)

\(81=5^y\)( loại )

+) Với \(x=1\)thay vào(1) ta được: 

\(4^1+80=5^y\)

\(84=5^y\)( loại )

+) Với x>1 ta có: \(4^x\)có tận cùng là hoặc 6 nên \(4^x+80\) sẽ có tận cùng là 4 hoặc 6

 Mà \(5^y\)luôn có chữ số tận cùng là 5 

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow x>1\)loại

Vậy ko có giá trị x,y nào

17 tháng 8 2019

dòng thứ 5 từ dưới lên trên

Mình ghi thiếu là chỗ \(4^x\)có tận cùng là 4 hoặc 6 

17 tháng 8 2019

- Hầu như các OLmers toàn tầm khoảng 2k4 đến 2k9 nên mk nghĩ là câu này của bn khó cs ai TL đc =))

- Mk nghĩ bn nên vào web : H để đăng bài ! Vì mk thấy ở đó chuyên giải mấy bài khó -,-

- Hoăc bn cs thể nhờ https://olm.vn/thanhvien/linhchi_nguyenthi1997 ( cj này là quản lý của olm và hay giải mấy bài khó )

Ckuc bn hok tốt =))

đáp án:

Hàm số đã cho xác định trên D = R.

Với m = -1. Khi đó hàm số trở thành y = -2x + 4 ; y' = -2 < 0 ∀x∈R, không thỏa mãn yêu cầu bài toán.

Với m ≠ -1. Ta có f'(x)= 3(m+1)x2 - 6(m + 1)x + 2m

   + Hàm số đồng biến trên khoảng có độ dài không nhỏ hơn 1 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn [x1;x2 ] thỏa mãn |x1 - x2 | ≥ 1

   + f'(x)= 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn[x1;x2]

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Theo Viét ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   + Với |x1 - x2 | ≥ 1 ⇔ (x1 + x2 )2 - 4x1 x2 - 1 ≥ 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đối chiếu điều kiện ta có m ≤ -9.

22 tháng 8 2019

\(VT=\left|x-\left(-y+\frac{1}{100}\right)\right|\ge\left|x\right|-\left|-y+\frac{1}{100}\right|\)

\(\ge\left|x\right|-\left(\left|-y\right|+\left|\frac{1}{100}\right|\right)=\left|-x\right|-\left|y\right|-\left|\frac{1}{100}\right|=VP\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x\right|\ge\left|-y+\frac{1}{100}\right|\\x\left(-y+\frac{1}{100}\right)\ge0\\-y.\frac{1}{100}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y\ge\frac{1}{100}\\x\ge\frac{1}{100}\\y\le0\end{cases}}\)

Vậy pt có nghiệm \(x\ge\frac{1}{100};y\le0\) thoả mãn \(x+y\ge\frac{1}{100}\)

nhấn máy tính phát ra luôn

ღᏠᎮღĐiền❤RaiBo༻꧂

Phải giải chi tiết ra chứ, bài dễ mak, lớp 6 cx lm đc

18 tháng 6 2021
Ta có 405=5×3^4 Suy ra 405^4=(5×3^4)^4=(5^4)×(3^16) Theo yêu cầu bài toán nên x=16
23 tháng 10 2019

\(x^{2019}-y^{2019}+2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}\right)+2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2\right)=0\)(1)

Có: \(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2>0\)mọi x, y.

(1) <=> \(x-y=0\)

<=> x = y

Thế vào P ta có:

\(P=x^4-2x^2+2=\left(x^2-1\right)^2+1\ge1\)

"=" xảy ra <=> \(y=x=\pm1\)

Vậy min P =1 khi và chỉ khi x = y =1 hoặc x = y =-1.