K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

A=x2+4x=x(x+4)

để A>0 suy ra x(x+4)>0 suy ra x>0,x+4>0 hoặc x<0,x+4<0

th1: nếu x>0,x+4>0 suy ra x>0, x>-4 suy ra x>0

th2: nếu x<0,x+4<0  suy ra x<0,x<-4 suy ra x<-4

vậy x>0 hoặc x<-4

Để \(x^2+2006x\)nhận giá trị âm

=> \(x^2+2006x< 0\)mà \(x^2>0\forall x\)

=> \(2006x< 0\)

=> \(x< 0\)

Vậy với mọi x<0 thì \(x^2+2006x\)nhận giá trị âm

Hok Tốt !!!!!!!!!!!!

15 tháng 9 2020

x2 + 2006x 

Để biểu thức có giá trị âm 

=> x2 + 2006x < 0

<=> x( x + 2006 ) < 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x< 0\\x+2006>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>-2006\end{cases}}\Leftrightarrow-2006< x< 0\)

2. \(\hept{\begin{cases}x>0\\x+2006< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< -2006\end{cases}}\)( loại )

Vậy với -2006 < x < 0 thì biểu thức có giá trị âm

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

18 tháng 7 2020

a) 2x2 - 4x = 2x(x- 2)  có giá trị dương 

Th1: 2x > 0 và x - 2 > 0 

<=> x > 0 và x > 2 

<=> x > 2 

Th2: 2x < 0 và x - 2 < 0 

<=> x < 0 và x < 2 

<=> x < 0 

Vậy 2x^2 - 4x  có giá trị dương khi và chỉ khi x < 0 hoặc x > 2

b) ( 3x + 1 ) ( 4x - 3 )  dương 

Th1: 3x + 1 > 0 và 4x - 3 > 0 

<=> x > -1/3 và x > 3/4 

<=> x >3/4 

Th2: 3x + 1 < 0 và 4x - 3 < 0 

<=> x < -1/3 và x < 3/4

<=> x < -1/3

Kết luận: ...

21 tháng 6 2015

Dể A âm => x^2 + 4 x < 0 => x(x+4) < 0 

(+) TH1 : x > 0 và x + 4 < 0 => x > 0 và x < - 4 => 0 <x  < -4 (vô lí) (Sở dĩ xét hai trường hợp vì âm . dương < 0 hoặc duwowang. amm > 0)

(+) TH2 ngược lại

ĐỂ A âm cũng giống vậy thôi

 

8 tháng 7 2017

Dể A âm => x^2 + 4 x < 0 => x(x+4) < 0 

(+) TH1 : x > 0 và x + 4 < 0 => x > 0 và x < - 4 => 0 <x  < -4 (vô lí) (Sở dĩ xét hai trường hợp vì âm . dương < 0 hoặc duwowang. amm > 0)

(+) TH2 ngược lại

ĐỂ A âm cũng giống vậy thôi