Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thôi mn ko cần trả lời đâu mk biết làm rùi nha mk chỉ khảo thui nhưng mà thui!
HELP ME !!! PLEASE HELP ME ~~~~~ LÀM ƠN GIÚM GIÙM !! ÔNG ĐI QUA < BÀ ĐI LẠI GIẢI GIÙM CON BÀI TOÁN !!
Ta có:
(10^2002)+2=100000...002 ( 2001 chữ số 0)
có tổng các chữ số là: 1+2+2001.0=3 chia hết cho 3
=>A là số tự nhiên (đpcm)
b) (10^2003)+8=1000...008 (2002 chữ số 0)
có tổng các chữ số là: 1+8+2002.0=9 chia hết cho 9
=> B là số tự nhiên (đpcm)
a)\(4^{72}=\left(4^3\right)^{24}=64^{24}\)
\(8^{48}=\left(8^2\right)^{24}=64^{24}\)
\(\Rightarrow4^{72}=8^{48}\)
a) \(4^{72}=\left(2^2\right)^{72}=2^{144}\)
\(8^{48}=\left(2^3\right)^{48}=2^{144}\)
mà \(2^{144}=2^{144}\)=> \(4^{72}=8^{48}\)
b) \(2^{252}=\left(2^2\right)^{126}=4^{126}\)
mà \(4^{126}< 5^{127}\)=> \(5^{127}>2^{252}\)
Câu 1 :
Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)
\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)
Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)
\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)
Vì 10101+1<10102+1
\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)
\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)
\(\Rightarrow\)10A>10B
\(\Rightarrow\)A>B
Vậy A>B.
Câu 2 :
Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì 2001<2001+2002 và 2002<2001+2002
\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)
\(\Rightarrow C>E\)
Vậy C>E.
Ta có : a.bcd.abc = abcabc
=> a.bcd.abc = abc.1001
=> a.bcd = 1001 ( Vì \(abc\ne0\))
Vì a ; bcd đều là số tự nhiên mà a là số có 1 chữ số (\(a\ne0\))
Phân tích ra các thừa số ta đươc : 1001 = 7 . 13 .11
Dễ dàng nhận thấy a = 7
và bcd = 13.11
<=> bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3