K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Chứng minh tam giac ABE bằng  tam giác ADC do

 AB=AC ; B=C ; BE = BC-BD=BC-CE=CD

Suy ra AE=AD suy ra Góc E = Góc D trong tam giac ADE . 

Xét tam giác ABD cân tại B suy ra ABD= ADB =[180 -40]/2=70

 Suy ra E=D=70 suy ra DAE=40 độ

21 tháng 1 2019

A B C D E

Giải :

a)xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=> \(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-60^0-40^0=80^0\)

Do DE // BC => \(\widehat{B}+\widehat{BED}=180^0\)(trong cùng phía)

=> góc BED = 1800 - góc B = 1800 - 800 = 1000

Xét t/giác BCD có góc DBC + góc C + góc BDC = 1800 (tổng 3 góc của 1 t/giác)

=> góc DBC = 1800 - góc C - góc BDC = 1800 - 1200 - 400 = 200

Do DE // BC => góc CBD = góc BDE (so le trong)

Mà góc DBC = 200 => góc BDE = 200

b) Ta có: góc ABD + góc DBC = 800

=> góc ABD = 800 - góc DBC = 800 - 200 = 600 (1)

Do DF là tia p/giác của góc BDC nên:

góc BDF = góc FDC = góc  BDC/2 = 1200/2 = 600 (2)

Mà góc ABD và góc BDF ở vị trí so le trong (3)

từ (1);(2);(3) => DF // AB

c) Xét t/giác EBD và t/giác FDB

có góc EBD = gióc BDF = 600 (cmt)

    BD : chung

góc EDB = góc DBF = 200 (cmt)

=> t/giác EBD = t/giác FDB (g.c.g)

=> DF = BE (hai cạnh tương ứng)

17 tháng 4 2019

a) Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\)

\(\widehat{BAC}=60\)

Suy ra \(\widehat{ABC}+\widehat{ACB}=180-60=120\)

Vì BD, CE lần lượt là phân giác \(\widehat{ABC}\)\(\widehat{ACB}\)

Nên \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)=\(\frac{120}{2}=60\)

Tam giác BIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180\)

Suy ra 60 + \(\widehat{BIC}\)=180

Suy ra \(\widehat{BIC}\)= 180-60=120

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0