Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.n—3 chia hết cho n—1
==> n—1–2 chia hết chi n—1
Vì n—1 chia hết cho n—1
Nên 2 chia hết cho n—1
==> n—1 € Ư(2)
n—1 € {1;—1;2;—2}
Ta có:
TH1: n—1=1
n=1+1
n=2
TH2: n—1=—1
n=—1+1
n=0
TH3: n—1=2
n=2+1
n=3
TH 4: n—1=—2
n=—2+1
n=—1
Vậy n€{2;0;3;—1}
Nếu bạn chưa học số âm thì không cần viết đâu
Ta có : \(A=3+3^2+3^3+3^4+...+3^{25}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{23}+3^{24}+3^{25}\right)\)
\(=3+3\left(3+3^2+3^3\right)+...+3^{22}\left(3+3^2+3^3\right)\)
\(=3+3.39+...+3^{22}.39\)
\(=3+39\left(3+...+3^{22}\right)\)
\(\Rightarrow A\)chia cho 39 dư 3
\(\Rightarrow A\)không chia hết cho 39 ( đpcm )
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
+) Với n = 1 thì ta có 22n + 1 + 1 (*) = 23 + 1 = 8 + 1 = 9 chia hết cho 3
+) Giả sử (*) đúng với n = k => 22k + 1 + 1 chia hết cho 3 thì ta cần chứng minh (*) cũng đúng với k + 1 tức 22k + 3 + 1 chia hết cho 3
Thật vậy:
22k + 3 + 1
= 4.22k + 1 + 1
= (22k + 1 + 1) + 3.22k + 1
Vì 22k + 1 + 1 chia hết cho 3 và 3.22k + 1 chia hết cho 3
=> (22k + 1 + 1) + 3.22k + 1 chia hết cho 3
=> Phương pháp qui nạp đã được chứng minh
Vậy với mọi n thuộc N* thì 22n + 1 + 1 chia hết cho 3
Bài 1:
Ta có : x - 10 = x + 3 - 13
Để x - 10 chia hết cho x + 3 thì x + 3 - 13 phải chia hết cho x + 3
=> 13 chia hết cho x + 3
=> x + 3 thuộc Ư13 hay x + 3 thuộc {+1; +13}
Nếu x + 3 = 1 => x = 1 - 3 = -2 Nếu x + 3 = -1 => x = -1 -3 = -4
Nếu x + 3 = 13 =>x = 13 - 3 = 10 Nếu x + 3 = -13=> x = -13 - 3 = -16
Vậy x thuộc { -16; -4; -2; 10}