K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

A CHIA HẾT CHO 11:

=(3+32+33+34+35)+.....+(386+387+388+389+390)

=3.(1+3+32+33+34)+......+386(1+3+32+33+34)

=3.121+......+336.121 

=121(3+...386) CHIA HẾT CHO 11

=> A CHIA HẾT CHO 1**** MÌNH 2 CÁI NHA BẠN

31 tháng 10 2015

gọi biểu thức là A
A=(3+32+33)+(34+35+36)+...+(388+389+390)
A=(3+32+33)+(33.3+33.32+33.33)+....+(387.3+387.32+387.33)
A=(3+32+33)+ 33(3+32+33)+....+387(3+32+33)
A=39.1+33.39+...+387.39
A=39.(33+1+....+387)
A=13.3(33+1+..+387)
=>S chia hết cho 13 vì A chứa thừa số 13

23 tháng 10 2015

AI MÀ GIẢI!

CHỈ CÁI ĐỀ THÔI MÀ CŨNG ĐỦ RỐI RỒI!!!!!!!!!!!!!!!!!!

23 tháng 10 2015

bà ra đề khó quá

8 tháng 8 2015

A = 3+32+33+...+312

A = (3+32)+(33+34)+...+(311+312)

A = 1(3+32)+32(3+32)+...+311.(3+32)

A = 1.12 + 32.12 +....+311.12

A = 12(1+32+...+311) chia hết cho 12

Mà 12 chia hết cho 4

=> A chia hết cho 4

A = 3+32+33+...+312

A = (3+32+33)+(34+35+36)+...+(310+311+312)

A = 3(1+3+32)+34(1+3+32)+....+310(1+3+32)

A = 3.13 + 34.13 +.....+310.13

A = 13(3+34+....+310) chia hết cho 13

KL: A chia hết cho 4; 12; 13 (đpcm)

5 tháng 1 2016

bài này có trong violympic ne tick mình chỉ cho

5 tháng 1 2016

 

A=3 + 32 + 33 + .....+3100

=(3+32)+(33+34)+....+(399+3100)

=3.(1+3)+33.(1+3)+...+399.(1+3)

=3.4+33.4+...+399.4

=4.(3+33+...+399) chia hết cho 4

Vậy A chia hết cho 9

19 tháng 2 2019

\(A=2+2^2+2^3+...+2^{2019}\)

\(2A=2^2+2^3+2^4+...+2^{2020}\)

\(A=2^{2020}-2\)

23 tháng 8 2019

=(7+7^2+7^3+7^4)+.....+(7^97+7^98+7^99+7^100)

=7(1+7+7^2+7^3)+...+7^97(1+7+7^2+7^3)

=400(7+...+7^97) chia hết 400

câu b tt

17 tháng 10 2018

\(A=\left(2+2^2+2^3+2^4+2^5\right)+\)\(\left(2^6+2^7+2^8+2^9+2^{10}\right)+....\left(2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)

\(A=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)\(+....+2^{86}.\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.21+2^6.21+...+2^{86}.21\)

\(A=21.\left(2+2^6+...+2^{86}\right)⋮21\)

25 tháng 4 2020

1) Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3\)

Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)

hay \(A⋮3\)(đpcm)

2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{1996}.13\)

\(=39+3^3.39+...+3^{1995}.39\)

Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)

hay \(B⋮39\)(đpcm)

25 tháng 4 2020

a) 2+22+23+...+2100

=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)

=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)

=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)

=2.31+26.31+....+296.31

=31(2+26+....+296)

=> đpcm