Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì |a| > 0 và |b| > 0
Mà |a| + |b| = 0
=> a=b=0.
b. +) |a|+|b|=1+1
=> a \(\in\){-1; 1} và b \(\in\){-1; 1}
+) |a|+|b|=0+2
=> a =0 và b \(\in\){-2; 2}
+) |a|+|b|=2+0
=> a \(\in\){-2; 2} và b=0.
a.Từ trên, ta có: \(\frac{1}{p}+\frac{1}{q}=\frac{46}{p.q}\) hay:\(\frac{p+q}{p.q}=\frac{46}{p.q}\) suy ra p+q=46.
b.Gọi số bé là a, vậy số lớn là 5a. Vậy 6a chia hết cho 498 hay a chia hết cho 83.
Nếu a >= 200 thì số lớn >=1000(vô lý). Vậy a<200.Từ đó có a=166
Vì ƯCLN(a,b)=6 nên ta có:\(\hept{\begin{cases}a⋮6\\b⋮6\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=6m\\b=6n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà ab=360
\(\Rightarrow\)6m.6n=360
\(\Rightarrow\)36(m.n)=360
\(\Rightarrow\)mn=10
Vì ƯCLN(m,n)=1 nên ta có bảng sau :
m 1 10 2 5
n 10 1 5 2
a 6 60 12 30
b 60 6 30 12
Vậy (a; b)\(\in\){(6;60);(60;6);(12;30);(30;12)}
Vì \(\text{ƯCLN(a;b) }=6\Rightarrow\text{ Đặt }\hept{\begin{cases}a=6m\\b=6n\end{cases}\left(m;n\inℕ^∗\right)};\left(m;n\right)=1\)
=> a.b = 360
<=> 6m.6n = 360
=> mn = 10
Với m;n \(\inℕ^∗;\left(m,n\right)=1\)có 10 = 2.5 = 1.10
=> Lập bảng xét 4 trường hợp
m | 1 | 10 | 2 | 5 |
n | 10 | 1 | 5 | 2 |
a | 6 | 60 | 12 | 30 |
b | 60 | 6 | 30 | 12 |
Vậy các cặp (a;b) thỏa mãn là : (6;60) ; (60;6) ; (12;30) ; (30;12)