K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

đề đau bạn?????

10 tháng 4 2020

Cho tui xin cái đề thì tui ms giúp đc chứ !!!

19 tháng 6 2021

\(5,A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|\)

\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)

\(A\ge2\)

\(< =>MIN:A=2\)dấu = xảy khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

4 tháng 6 2021

idcm888dkk8cdw6ysgyxdbwdqjhqwuiowqqwudcgqofyhrli2uiy3yuyewiohewuwfwou

4 tháng 6 2021

xin lỗi, chưa học tới lớp 9

15 tháng 3 2020

cần cái gì

17 tháng 6 2021

Là thế lào

17 tháng 6 2021

Mọi người làm hết giúp mình với

9 tháng 8 2020

ĐNÁ: Đông Nam Á.còn câu còn lại mình không biết đâu.

20 tháng 4 2020

2.)\(x^3-10x+1=y^3+6y^2\)(1)

    Đặt\(x=y+b\)với \(b\inℤ\).Ta có:

                                                  (1)\(\Leftrightarrow\)\(y^3+3y^2b+3yb^2+b^3+10y+10b-1=y^2+6y^2\)

                                                      \(\Leftrightarrow\)\(y^2\left(3b-6\right)+y\left(3b^2+10\right)+b^3+10b-1=0\)(1)

                                                \(\Delta=\left(3b^2+10\right)^2-\left(12b-24\right)\left(b^3+10b-1\right)\ge0\)

                                                    \(=-3b^4+24b^3-60b^2+252b+76\)

                                                    \(=1399-3\left(b^2-4b\right)^2-3\left(2b-21\right)^2\ge0\)

Do đó:\(\left(b^2-4b^2\right)+\left(2b-21\right)^2\le466\)

Nhận thấy:\(\left(2b-21\right)^2\le466\)nên \(0\le b\le21\)

Theo phương trình ban đầu thì\(x,y\)khác tính chắn lẻ nên\(b\)lẻ:

          Nếu\(b=1\)thì(1)\(\Leftrightarrow\)\(-3y^2+12y+10\Leftrightarrow y=5\Rightarrow x=6\)

          Nếu\(b=3\)thì(1)\(\Leftrightarrow3y^2+37y+56=0,\)không có nghiệm nguyên

20 tháng 4 2020

\(\Leftrightarrow\)Nếu\(b=5\)thì(1)\(\Leftrightarrow9y^2+85y+174=0\Leftrightarrow y=-3\Rightarrow x==2\)

\(\Leftrightarrow\)Nếu\(b=7\)thì(1)\(\Leftrightarrow\)\(15y^2+157y+412=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=11\)thì(1)\(\Leftrightarrow27y^2+373y+1440=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=13\)thì(1)\(\Leftrightarrow33y^2+517y+2326=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=15\)thì(1)\(\Leftrightarrow39y^2+685+3524=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=17\)thì(1)\(\Leftrightarrow45y^2+877y+5082=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=19\)thì(1)\(\Leftrightarrow51y^2+1093y+7048=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=21\)thì(1)\(\Leftrightarrow57y^2+442y+9479=0\)(Vô Nghiệm)

Vậy phương trình có nghiệm nguyên\(\left(a,b\right)=\left(6,5\right),\left(2,-3\right)\)

P/s:Do bài trên toiii gửi nhầm nên đây là phần tiếp theo của bafi2,Sr:<

_Hoc Tốt_