K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

Gọi 5 số  đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2

Tổng Bình phương 5 số là :

     ( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2 

=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 

= 5a^2 + 10 

= 5 ( a^ 2 + 2 ) chia hết cho 5  (1)

Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)

Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương 

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

13 tháng 3 2016

đơn giản thế này thôi:

Tổng bình phương của 5 STN liên tiếp chia 5 dư 4 không là SCP.

12 tháng 9 2019

Tớ cx chơi cho tham gia nha/////

12 tháng 9 2019

nma ai đó giải hộ tớ bài kia đi đã =))) Vụ chạy bo tính sau nhaaa :<<< 

14 tháng 5 2018

Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3) 

Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn

Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)

Ta có 

\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)

Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)

Mặt khác , \(t^2\equiv0\left(mod4\right)\)

=> Vô lý 

Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương 

2A = (3+1)(3-1)(3^2+1)(3^4+1)...(3^64+1)

2A= (3^2-1)(3^2+1)(3^4+1)...(3^64+1)

Cứ tiếp tục như thế ta dc

2A= 3^128 -1

A = (3^128-1)/2

7 tháng 2 2020

chào bố :Đ

22 tháng 3 2020

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

.....

\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}\)