K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

\(x^2+5y^2-4xy+2x-10y+14\)

\(=\left(x^2+4y^2-4xy+2x-4y+1\right)+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Vì \(\hept{\begin{cases}\left(x-2y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0;\forall x,y\)

Vậy ...

14 tháng 10 2018

       \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)

       \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)

Chúc bạn học tốt.

21 tháng 3 2019

BÀI 7  hình như sai đề

6 tháng 7 2021

b) 10x - x2 - 9y2 + 6y - 100 

= - (x2 - 10x + 25) - (9y2 - 6y + 1) -  74

= - (x - 5)2 - (3x - 1)2 - 74 \(\le-74< 0\)

5 tháng 4 2018

\(A=-4x^2-5y^2+8xy+10y+12\)

\(-A=4x^2+5y^2-8xy-10y-12\)

\(-A=\left(4x^2-8xy+y^2\right)+\left(4y^2-10y+\frac{25}{4}\right)-\frac{73}{4}\)

\(-A=\left(2x-y\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{73}{4}\)

Mà : \(\left(2x-y\right)^2\ge0\forall x;y\)

         \(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-A\ge-\frac{73}{4}\)

\(\Leftrightarrow A\le\frac{73}{4}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}2x-y=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{5}{4}\end{cases}}\)

Vậy \(A_{Max}=\frac{73}{4}\Leftrightarrow\left(x;y\right)=\left(\frac{5}{8};\frac{5}{4}\right)\)

7 tháng 3 2020

Ta có : \(x^2+5y^2+2x-4xy-10y+14\)

\(=x^2+2x\left(1-2y\right)+\left(1-2y\right)^2-\left(1-2y\right)^2+5y^2-10y+14\)

\(=\left(x-2x+1\right)^2-1-4y^2+4y+5y^2-10y+14\)

\(=\left(x-2x+1\right)^2+y^2-6y+9+4\)

\(=\left(x-2x+1\right)^2+\left(y-3\right)^2+4\ge4>0\) (đpcm)

7 tháng 3 2020

Ta có: x2 + 5y2 + 2x - 4xy - 10y + 14 

= (x2 - 4xy + 4y2) + (2x - 4y) + 1 + (y2 - 6y + 9) + 4

= (x - 2y)2 + 2(x - 2y) + 1 + (y - 3)2 + 4

= (x - 2y + 1)2 + (y - 3)2 + 4 > 0 \(\forall\)x; y

Do (x - 2y + 1)2 \(\ge\)0; (y - 3)2 \(\ge\)0 ; 4 > 0

A) Với \(x>y>0\),ta có: \(x^2+y^2< x^2+y^2+2xy=\left(x+y\right)^2\Rightarrow\frac{1}{x^2+y^2}>\frac{1}{\left(x+y\right)^2}\)

Xét: \(\frac{x^2-y^2}{x^2+y^2}>\frac{x^2-y^2}{\left(x+y\right)^2}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x-y}{x+y}\)--->ĐPCM

B) \(3^{16}+1=\left(3^{16}-1\right)+2=\left(3^8+1\right)\left(3^8-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)+2\)

\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)+2\)

\(>\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)--->ĐPCM

a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)

\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0

Suy ra x=-1;y=-1/2

b.Ta có:\(x^2-6x+y^2-6y+21=3\)

\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0

Suy ra x=y=3

c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0

Suy ra x=y=4

6 tháng 8 2020

a) 2x2 - 4xy + 4y2 + 2x + 1 = 0

<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0

<=> ( x - 2y )2 + ( x + 1 )2 = 0

<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)

b) x2 - 6x + y2 - 6y + 21 = 3

<=> x2 - 6x + y2 - 6y + 21 - 3 = 0

<=> x2 - 6x + y2 - 6y + 18 = 0

<=> x2 - 6x + 9 + y2 - 6y + 9 = 0

<=> ( x - 3 )2 + ( y - 3 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

c) 2x2 - 8x + y2 - 2xy + 16 = 0

<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0

<=> ( x - y )2 + ( x - 4 )2 = 0

<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)

7 tháng 8 2020

Bài 3 : Ta có : \(A=\frac{2}{5}xy\left(x^2y-5x+10y\right)\)

\(A=\frac{2}{5}xy\cdot x^2y+\frac{2}{5}xy\left(-5x\right)+\frac{2}{5}xy\cdot10y\)

\(A=\frac{2}{5}x^3y^2-2x^2y+4xy^2\)

Chọn C

Bài 4 : \(\left(x-2\right)\left(x+5\right)=x\left(x+5\right)-2\left(x+5\right)\)

\(=x^2+5x-2x-10\)

\(=x^2+3x-10\)

Chọn B

Bài 3 : 

Ta có: A = 2/5xy( x2y -5x + 10y ) 

= 2/5xy.x2y - 2/5xy.5x + 2/5xy.10y

= 2/5x3y- 2x2y + 4xy2.

Chọn đáp án C

Bài 4 :

Ta có ( x - 2 )( x + 5 ) 

= x( x + 5 ) - 2( x + 5 )

= x2 + 5x - 2x - 10 = x2 + 3x - 10.

Chọn đáp án B.

Hok tốt