Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p xem lại đề đc k
thử với n=1 ta được:
VT=3^3-2^3+3+2=27-8+3+2=24 không chia hết cho 10
a) Ta có \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\forall n\inℕ^∗\)
Đây bạn
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.\left(2.5\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)Chia hết cho 10
Suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10. k cho mình nha :V
thấy 3n+2 +3n = 3n ( 32+1) = 3n.10 chia hết cho 10 với mọi n nguyên dương
và 2n+2 +2n = 2n(22+1) = 2n.5 cũng chia hết cho 10 với mọi n nguyên dương.
=> đpcm
a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)
\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)
\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)
\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)
b,\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)
\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)
\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)
\(=3^n\cdot9+1-2^n\cdot4+1\)
\(=3^n\cdot10-2^n\cdot5\)
Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)
\(3^n\cdot10⋮10\)
Vậy : ....
b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
=\(3^{n+1}.2.5+2^{n+2}.3\)=\(2.3\left(3^n+2^{n+1}\right)⋮6\)
=> dpcm
Bài 1 :
Ta có :
a chia 3 dư 1 ⇒a=3k+1⇒a=3k+1
b chia 3 dư 2 ⇒b=3k1+2⇒b=3k1+2 (k;k1∈N)(k;k1∈N)
ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2
Mà 3k.k1+2.3k+3.k1⋮33k.k1+2.3k+3.k1⋮3
⇒3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2
⇒ab⇒ab chia 3 dư 2 →đpcm→đpcm
Bài 2 :
Ta có :
n(2n−3)−2n(n+1)n(2n−3)−2n(n+1)
=2n2−3n−2n2−2n=2n2−3n−2n2−2n
=−5n⋮5=−5n⋮5
⇒n(2n−3)−3n(n+1)⋮5⇒n(2n−3)−3n(n+1)⋮5 với mọi n
→đpcm
Bài 1:
a=3n+1
b= 3m+2
a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.
Bài 2:
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
= -5n
-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
Ta có: n3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nn3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nVì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> n3+5nn3+5n chia hết cho 6 (đpcm)
Ta có n3 + 5n = n3 - n + 6n
= n(n2 - 1) + 6n
= n(n2 - n + n - 1) + 6n
= n[n(n - 1) + (n - 1)] + 6n
= n(n - 1)(n + 1) + 6n = (n - 1)n(n + 1) + 6n
Nhận thấy (n - 1)n(n + 1) \(⋮\)6 (tích 3 số nguyên liên tiếp)
Lại có 6n \(⋮\)6
=> (n - 1)n(n + 1) + 6n \(⋮\)6
=> n3 + 5n \(⋮\)6 \(\forall n\inℤ^+\)
a)Thu gọn đơn thức:
B=4x2y2z(-3x2z)
B=16xyz(-6xz)
B=-96x2yz2
Hệ số:-96
Phần biến: x2yz2
b)Thay x=-2,y=-1,z=1 vào B=-96x2yz2có
B=-96*(-2)2*(-1)*12
B=-96*4*(-1)*1
B=-96*(-4)
B=384
Câu c) hình như sai đề :DD
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm E, Trên tia đối của tia CB lấy điểm N sao cho EB = BC = CN
a)Chứng minh rằng tam giác AEN cân
b)kẻ BH vuông góc với AE (H thuộc cạnh AE)
kẻ CK vuông góc với AN (K thuộc cặp AN)
Chứng minh rằng tam giác HBE bằng tam giác KCN
+) Nếu n là số nguyên chẵn
=> n + 2020\(⋮2\)
=> \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)
+) Nếu n là số nguyên lẻ
=> n + 2019 \(⋮2\)
=> \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)
Vậy với mọi số nguyên n thì biểu thức P luôn chia hết cho 2.