K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Chứng minh quy nạp theo n 

\(10^n+18n-1⋮27\)

+) với n = 0 ta có: \(10^0+18.0-1=0⋮27\)

=> (1) đúng với n =0

+) g/s (1) đúng cho tới n ( với n là số tư nhiên )

+) ta chứng minh (1) đúng với n + 1

Ta có: \(10^{n+1}+18\left(n+1\right)-1=10.10^n+18n+17=10\left(10^n+18n-1\right)-10.18n+10+18n+17\)

\(=10\left(10^n+18n-1\right)-9.18n+27⋮27\)

=> ( 1) đúng với n + 1

Vậy (1) đúng với mọi số tự nhiên n

23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

17 tháng 10 2015

Ta có: 10^n + 18n - 28 = (10^n - 1) + 18n-27 = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n)-27 (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3

=> A chia hết cho 3

=> 9.A chia hết cho 27

=>9.A-27 chia hết cho 27

=>10^n + 18n -28 chia hết cho 27

=>ĐPCM

17 tháng 10 2015

mk cx k giải đk bài này 

                                                      Bài giải    :

8.1 x+y=xy

⇒x-xy+y=0

⇒x(1-y)+(y-1)+1=0

⇒(x-1)(1-y)+1=0

⇒(x-1)(y-1)-1=0

⇒(x-1)(y-1)=1

⇒x-1, y-1 là ước của 1

⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1

⇒(x;y)=(2;2),(0;0)

 8.3. 5xy-2y²-2x²+2=0

⇔(x-2y)(y-2x)+2=0

⇔(x-2y)(2x-y)=2

⇒x-2y và 2x-y là ước của 2

Hình như tui nhầm bài thì phải???

7 tháng 12 2015

Câu hỏi tương tự          

9 tháng 8 2016

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên

       * Vậy A chia hết cho 27

9 tháng 8 2016

Đây là toán lớp 7 chứ toán 8 gì hum
 

12 tháng 5 2018

\(A=n^3+n^2+5n^2+5n-24n-24=n\left(n+1\right)+5n\left(n+1\right)-24\left(n+1\right)\)

\(=\left(n+5n+24\right)\left(n+1\right)=\left(6n+24\right)\left(n+1\right)=6\left(n+4\right)\left(n+1\right)\)

vì \(6⋮6\Rightarrow A⋮6\)

19 tháng 11 2018

a) Đề sai, phải là 384 mới đúng

Đặt \(A=n^4-10n^2+9\)

\(A=\left(n^4-n^2\right)-\left(9n^2-9\right)\)

\(A=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^2-9\right)\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì n lẻ nên n = 2k + 1 ( k thuộc Z )

Khi đó A = 2k( 2k + 2)(2k - 2)( 2k + 4)

A = 16k( k + 1)( k - 1)( k + 2)

Ta thấy k - 1; k; k + 1; k + 2 là những số nguyên liên tiếp nên có hai số chẵn liên tiếp và một số chia hết cho 3

=> k( k + 1)( k - 1)( k + 2) chia hết cho 3 và 8

=> k( k + 1)( k - 1)( k + 2) chia hết cho 24 ( vì ƯCLN(3;8)=1)

=> A chia hết cho 16.24 = 384 ( Đpcm )

19 tháng 11 2018

Đăng từng câu thôi, không giới hạn số lượng câu hỏi mà :)

b) Ta có: 18n + 9 ⋮ 9; 10n không chia hết cho 9

=> 10n + 18n + 9 không chia hết cho 27

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

24 tháng 7 2019

Bài 2 phải là chứng minh chia hết cho 5 chứ nhỉ 

24 tháng 7 2019

Bài 2:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)