Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B M D E F
a) Xét tam giác ABC có DB = DA, MB = MC nên MD là đường trung bình của tam giác ABC.
\(\Rightarrow AC=2MD\) và MD // AC.
Do E đối xứng với M qua D nên ED = EM hay EM = 2MD.
Suy ra EM = AC.
Xét tứ giác EMCA có EM // AC và EM = AC nên AEMC là hình bình hành.
b) Ta có M là trung điểm của BC và AF nên tứ giác ABFC là hình bình hành.
Lại có \(\widehat{BAC}=90^o\) nên ABFC là hình chữ nhật.
c) Do ABFC là hình chữ nhật nên \(\widehat{ABF}=90^o\Rightarrow AB\perp BF\)
d) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
\(AB^2+AC^2=BC^2\Rightarrow AC^2=10^2-6^2=64\Rightarrow AC=8\left(cm\right)\)
Vậy diện tích hình chữ nhật ABFC là: 6 x 8 = 48 (cm2)
hbh abcd có ab =ac, m là trung điểm của BC e đối xưng với a qua m. A/ tứ giác abec là hình gì ?vì sao ?B/chứng minh DC =ce
a: Xét tứ giác ABFC có
M là trung điểm chung của AF và BC
góc BAC=90 độ
=>ABFC là hình chữ nhật
b: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
c: Xét ΔBAC có BM/BC=BD/BA
nên MD//AC và MD=1/2AC
=>ME//AC và ME=AC
=>AEMC là hình bình hành
a)
Ta có: M và E đối xứng với nhau qua D(gt)
nên D là trung điểm của ME
Xét ΔABC có
M là trung điểm của BC(AM là đường trung tuyến ứng với cạnh BC trong ΔABC)
D là trung điểm của AB(gt)
Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay MD//AC và \(MD=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E\(\in\)MD và \(MD=\dfrac{ME}{2}\)(D là trung điểm của ME)
nên ME//AC và ME=AC
Xét tứ giác AEMC có
ME//AC(cmt)
ME=AC(cmt)
Do đó: AEMC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác ABFC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AF(A và F đối xứng nhau qua M)
Do đó: ABFC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABFC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABFC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)