K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

bài này dễ .....mới là chuyện lạ

3 tháng 8 2017

Théo bđt Cauchuy Schwarz dạng Engel ta có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{3}\)

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

7 tháng 4 2019

1/y+1/x+1/z=0

=>xy+yz+xz=0(tự cm)

(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2=0

x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+3xyz=3xyz

x^6+y^6+z^6=(x^2+y^2+z^2)(X^4+y^4+z^4+x^2y^2+y^2z^2+z^2z^2)+3(xyz)^2=3(xyz)^2

=> (x^6+y^6+z^6)/(x^3+y^3+z^3)=3(Xyz)^2/3xyz=xyz(dpcm)

7 tháng 4 2019

:D???? ể??

\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-y-z\\y=-z-x\\z=-x-y\end{cases}}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\)

\(\hept{\begin{cases}xy=\left(-y-z\right).y=-y^2-zy\\yz=\left(-x-z\right).z=-z^2-xz\\xz=\left(-y-x\right).x=-x^2-xy\end{cases}}\Rightarrow xy+yz+zx=-\left(x^2+y^2+z^2+xz+xy+zy\right)=0\)

\(\Leftrightarrow x=y=z=0??????\)

p/s: ko biết t lỗi hay đề lỗi ((: 

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

12 tháng 4 2020

1) Bài này có 2 cách giải

Cách 1:

để ý rằng \(\hept{\begin{cases}1-x^2=\left(1-x\right)\left(1+x\right)=\left(y+z\right)\left(2x+y+z\right)\\x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\end{cases}}\)

ta có: \(\frac{1-x^2}{x+yz}=\frac{a\left(b+c\right)}{bc}=\frac{a}{b}+\frac{a}{c}\)

trong đó: \(a=y+z;b=z+x;c=x+y\). Tương tự, ta cũng có:

\(\hept{\begin{cases}\frac{1-y^2}{y+zx}=\frac{b}{c}+\frac{b}{a}\\\frac{1-z^2}{z+xy}=\frac{c}{a}+\frac{c}{b}\end{cases}}\)

Do đó sử dụng BĐT AM-GM ta có:

\(VT_{\left(1\right)}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

Dấu "=" xảy ra khi a=b=c và x=y=z=\(\frac{1}{3}\)

Cách 2:

Sử dụng BĐT AM-GM  dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x+yz\le x+\frac{\left(y+z\right)^2}{4}=x+\frac{\left(1-x\right)^2}{4}=\frac{\left(1+x\right)^2}{4}\)

Do đó: \(\frac{1-x^2}{x+yz}\ge\frac{4\left(1-x^2\right)}{\left(1+x\right)^2}=\frac{4\left(1-x\right)}{1+x}=4\left(\frac{2}{1+x}-1\right)\)

tương tự có:\(\hept{\begin{cases}\frac{1-y^2}{x+yz}\ge4\left(\frac{2}{1+y}-1\right)\\\frac{1-z^2}{z+xy}\ge4\left(\frac{2}{1+z}-1\right)\end{cases}}\)

Cộng các đánh giá trên và sử dụng BĐT Cauchy-Schwarz dạng cộng mẫu, ta được

\(VT_{\left(1\right)}\ge8\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)-12\)

               \(\ge8\cdot\frac{9}{3+x+y+z}+12=6\)

6 tháng 1 2018

Áp Dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)

^_^

6 tháng 1 2018

Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)

\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)

+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)

\(\Rightarrow\)ĐPCM 

hên xui thôi -_-

15 tháng 5 2019

Áp dụng BĐT Cauchy-schwarz dạng engel,ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)

\(\Rightarrowđpcm\)