Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt A = \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left[\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)\right]+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+4y^2=t\Rightarrow A=t\left(t+2y^2\right)+y^4\)
\(=t^2+2ty^2+y^4=\left(t+y^2\right)^2\)
Do x, y nguyên nên t nguyên, vậy thì t + y2 cũng nguyên. Suy ra A là số chính phương.
a) \(ĐKXĐ:x,y\ne0;x\ne\pm y\)
Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x+y\right)^2}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{x^2.\left(x^2-y^2\right)}{\left(x^2-y^2\right).\left(x^2-y^2\right)}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x^2+2xy+y^2\right)-2x^2y-x^2.\left(x^2-y^2\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{x^2y^2+y^4+2xy^3-2x^2y-x^4+x^2y^2}{\left(x-y\right)^2\left(x+y\right)^2}\right]\)
Đề này lỗi mình nghĩ vậy vì trên tử kia không đẹp lắm.....
+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)
\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)
+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Áp dụng bđt Bunhiacopxki
\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)
\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)
(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Tương tự: \(xy^2+yz^2+zx^2\le3\)
\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)
\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)
a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)