Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)^3 - 3xy(x+y) + z^3 - 3xyz = 0
(x+y+z) ( (x+y)^2 +z^2 -z(x+y) -3xy) =0
(x+y+z) ( x^2+ 2xy+y^2 +z^2- zx-zy-3xy)=0
(x+y+z) ( x^2+y^2+z^2 -zx-zy -xy)=0
Suy ra x+y+z =0
x+y = -z
y+z = -x
x+z = -y
B = -16 + (-3) +2038 = 2019
Ta có: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\left(x,y,z\ne0\right)\)
+) x + y + z = 0 \(\Rightarrow B=\frac{-16z}{z}+\frac{-3x}{x}-\frac{-2038y}{y}\)
\(=-16-3+2038=2019\)
+) x = y = z \(\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}-\frac{2038.2y}{y}\)
\(=32+6-4076=-4038\)
Em nên viết đề bài bằng công thức toán học, có biểu tượng Σ góc trái màn hình. Như vậy thầy cô mới có thể hiểu đúng và đủ đề bài để trợ giúp tốt nhất cho học viên của Olm em nhé!
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!
Ta có: \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right).\left[\left(x+y+z\right)^2-3.\left(x+y\right).z\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2zx-3xz-3yz-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+z\right).\left(x^2+y^2+z^2-xz-yz-xy\right)=0\)
+ \(x+y+z=0\)\(\Rightarrow\)\(C=\frac{x^{2019}+y^{2019}+z^{2019}}{0}\)( Loại )
+ \(x^2+y^2+z^2-xz-yz-xy=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xz-2yz-2xy=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\)\(x=y=z\)
\(\Rightarrow\)\(C=\frac{x^{2019}+x^{2019}+x^{2019}}{\left(x+x+x\right)^{2019}}=\frac{3.x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)
Vậy.......
Từ x3 + y3 + z3 = 3xyz
=> ( x + y + z )( x2 + y2 + z2 - xy - yz - xz ) = 0 ( phân tích như bạn kia )
Vì x + y + z ≠ 0
=> x2 + y2 + z2 - xy - yz - xz = 0
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0
<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0
VT ≥ 0 ∀ x,y,z. Đẳng thức xảy ra <=> x=y=z
Khi đó \(C=\frac{x^{2019}+y^{2019}+z^{2019}}{\left(x+y+z\right)^{2019}}=\frac{3x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}\cdot x^{2019}}=\frac{1}{3^{2018}}\)
Ta có:
\(x^3+y^3+z^3=3xyz\left(gt\right)\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Rightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xy+3zx+3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
\(\Rightarrow x=y=z\)
Xét trường hợp x = y = z, ta có:
\(P=\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(P=\dfrac{x^3}{2x.2x.2x}\)
\(P=\dfrac{x^3}{8x^3}\)
\(P=\dfrac{1}{8}\)
Xét trường hợp x + y + z = 0, ta có:
\(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{-\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Rightarrow P=-1\)
Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).
Không mất tính tổng quát, giả sử x + y = 0
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow x^3=-y^3\).
Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).
Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(B=\dfrac{16.\left(-z\right)}{z}+\dfrac{3.\left(-x\right)}{x}-\dfrac{2019.\left(-y\right)}{y}=2019-19=2000\)
GIÁO VIÊN SAO TOÀN SAI HẰNG ĐẲNG THỨC THẾ????