K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

a, góc BAH = góc HCA vì cùng phụ vời góc HAC

b, Kẻ DK vuông góc với AC.

BA= BD(gt) nên tam giác ABD cân tại A

Suy ra: góc BAD= góc BDA

Mà góc BDA +góc HAD = 90 độ (vì tam giác AHD vuông tại A) ,góc BAD+ góc KAD =góc BAC =90 độ

Do đó: góc HAD =góc KAD

Chứng minh được tam giác HAD =tam giác KAD (cạnh huyền-góc nhọn)

Dẫn đến góc HAD =góc KAD hay góc HAD= góc DAC và lại có tia AD nằm giữa 2 tia AH,AC

Vậy AK là tia p/g của góc HAC

c, tam giác HAD= tam giác KAD(cmt) nên AH=AK

                                                              DH=DK (1)

tam giác DKC vuông tại K nên DK<DC (2) và KC<DC

TỪ (1) và (2) suy ra: DH<DC

d, Ta có: AB =BD(gt), AK =AH(cmt) và KC<DC(cmt)

Do đó: AB +AK +KC < BD +AH +DC

Nên : AB+AC < BC+AH < BC +2AH

Vậy AB+AC < BC+ 2AH

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

d: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

17 tháng 4 2019

A B C D E H K 1 2

a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:

\(\widehat{A}:chung\)

\(\Delta ABC\)cân => AB = AC ( ĐL )

\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)

 => \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)

b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )

nên \(\Delta AED\)là tam giác cân ( ĐPCM )

Bài làm

Vì ΔABCΔABC cân nên ⇒Bˆ=C1ˆ⇒B^=C1^

Mà C1ˆ=C2ˆC1^=C2^ ( 2 góc đối đỉnh ) ⇒Bˆ=C2ˆ⇒B^=C2^

Xét ΔABDΔABD vàΔICEΔICE có

CI=CA(gt)Bˆ=Cˆ2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)CI=CA(gt)B^=C^2BD=CE(gt)⇒ΔABD=ΔICE(c−g−c)

2) Xét ΔBMDΔBMD và ΔNECΔNEC có:

BMDˆ=CNEˆ=(900)Bˆ=C2ˆ(cmt)BD=CE⇒ΔBMD=ΔNECBMD^=CNE^=(900)B^=C2^(cmt)BD=CE⇒ΔBMD=ΔNEC ( cạnh huyền - góc nhọn)

⇒BM=CN⇒BM=CN ( 2 cạnh tương ứng )

                                 ~Học tốt!~

16 tháng 8 2020

a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).

Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).

AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).

Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).

Đáp số: Số đo góc AMC = 110 độ.

b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).

Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).

Đáp số: Số đo góc ABE = 40 độ.

A B C M D E

Xét \(\Delta ABD\)và \(\Delta HBD\)có:

       \(\widehat{BAD}=\widehat{BHD}=90^o\left(gt\right)\)

        BD là cạnh chung

        \(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta ABD=\Delta HBD\left(CH-GN\right)\)