Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có: HB = HD, GD = GC (gt)
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC
b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC
c) EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC
A A A B B B C C C H H H I I I K K K D D D a/\(\Delta ABK:IA=IB,BH=KH\Rightarrow IH//AK,AD//\Rightarrow AKHD\) là hình bình hành
b/\(AHBD:AD//,AD=BH\left(=HK\right),AH\perp BH\Rightarrow AHBD\)là hình chữ nhật
\(\Rightarrow S_{AHBD}=AH.BH=6.\sqrt{\left(AB^2-AH^2\right)}=6.8=48cm^2\)
a) Theo gt M là TĐ của BC(1)
Ta có H đối xứng vs D qua M=> M là TĐ của HD (2)
Từ (1),(2)=>BHCD là hình bình hành
b),c) mk k biết lm hjhj