Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABM và tam giác DCM có
+ BM=CM ( gt)
+ Góc AMB = góc DMC ( đối đỉnh)
+ AM = DM
=> tam giác ABM = tam giác DCM ( c-g-c)
b) Vì tam giác ABM = tam giác DCM
=> góc BAM = Góc CDM ( 2 góc tương ứng )
Ta có : Góc BAM = Góc CDM ( c/m trên)
Mà góc BAM + CAM = 180độ( 2 góc kề bù ) (1)
góc CDM + BDM = 180độ ( 2 góc kề bù ) (2)
Mà góc BAM = góc CDM
Từ (1) và (2) => Góc CAM = góc BDM
Xét tam giác ACM và tam giác BDM có
+ Góc CAM = BDM ( c/m trên)
+ BM = CM ( gt)
+ góc BMD = góc AMC ( đối đỉnh )
=> Tam giác ACM = tam giác BDM ( g.c.g)
=> AC = BD ( 2 cạnh tương ứng)
c) bạn tự làm ạ . Mình bận
A B C D M
a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có
BM = CM ( gt)
\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )
AM = DM ( gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)
b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có
AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\) ( 2 góc đối đỉnh )
MC = MB ( gt)
=> \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)
=> AC = DB ( 2 cạnh tương ứng )
và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AC // BD
c) +) Theo câu a ta có \(\Delta\)ABM = \(\Delta\)DCM
=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
+) Xét \(\Delta\)ABC và \(\Delta\)DCB có
\(\widehat{ABM}=\widehat{DCM}\) ( cmt)
BC : cạnh chung
\(\widehat{ACM}=\widehat{DBM}\) ( cmt)
=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)
=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )
Mà \(\widehat{BAC}=90^o\) ( gt)
=> \(\widehat{CDB}=90^o\)
Học tốt
Takigawa Maraii
Quất luôn !!
A B C D M I x
a)
Vì tam giác ABC cân tại A ( AB = AC )
Mà M là trung điểm của BC
=> AM vuông góc với BC
Xét tam giác AMB ( góc AMB = 90 độ ) và tam giác AMC ( góc AMC = 90 độ ) ta có
AB = AC
BM = MC ( GT )
=> tam giác AMB = tam giác AMC ( Cạnh huyền – cạnh góc vuông )
b) không có yêu cầu
c) Xét tam giác AMB ( góc AMB = 90o ) Và tam giác DMC ( góc DMC = 90 độ )
BM = MC
AM = MD ( GT )
=> Tam giác AMB = tam giác DMC ( 2 cạnh góc vuông )
=> Góc ABM = góc MCD ( 2 cạnh tương ứng )
MÀ 2 góc ở vị trí so le trong
=> AB // CD
d) Xét tam giác ABC và tam giác CIA có :
AC : cạnh chung
Góc ACB = góc CAI ( BC // Ax )
BC = AI
=> Tam tam giác ABC = tam giác CIA ( c - g - c )
=> Góc BAC = góc ACI ( 2 cạnh tương ứng )
MÀ 2 góc ở vị trí sole trong
=> AB // CI
MÀ CD // AB
=> 3 điểm D ; I ;C thẳng hàng
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a, xét \(\Delta AMBva\Delta AMC\)
AB=AC
AM cạnh chung
MB=MC
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b, xét \(\Delta AMBva\Delta CMD\)
AM=MD
\(\widehat{AMB}=\widehat{CMD}\)
MB=MC
\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)
mà 2 góc này ở vị chí so le trong
\(\Rightarrow AB//CD\)
c, theo bài: tia MD là tia dối của tia MA
\(\Rightarrow\widehat{AMD}=180^0\)
\(\widehat{KMD}=\widehat{IMA}\)( 2 góc đối đỉnh)
ta có: \(\widehat{AMD}=\widehat{AMK}+\widehat{KMD}\)
hay\(\widehat{AMD}=\widehat{AMK}+\widehat{AMI}=180^0\)
\(\Rightarrow\widehat{IMK}=180^0\)
\(\Rightarrow\)I,M,K thẳng hàng
A,xét tam giác AMB và tam giác DMC , có :
AMB=DMC (đối đỉnh)
DM=AM (gt)
CM=BM (gt)
=> Tam giác AMB = tam giác DMC (c.g.c)
=>BAM=CDM
vì BAM và CDM nằm ở vị trí so le trong và bằng nhau
=> AB//DC
\(\text{a, Nối BD và DC}\)
Ta co: ΔABC⊥A có M la trung diem cua cạnh huyền BC => AM là trung tuyến
=> AM = BC/2 => AM = MC = MB
mà MD = MA => MA=MD=MC=MB
=> Tứ giac BDCA có 2 đg chéo cat nhau tại trung diem cua mỗi đg
mà tứ giac BDCA có góc A = 90
=> tứ giac BDCA là HCN
=> AB= DC và AB // DC
b, xét △ABC và △CDA co
\(\text{AB = DC ; AC chung;}\widehat{BAC}=\widehat{ACD}=90^0\)
=> △ABC = △CDA (cgc)
c, Ta co: BD = AC ( BDCA là HCN)
mà AC = AE => BD = AE (1)
Ta có: BD // ÁC mà AE là tia đối của AC
=> BD // AE (2)
(1,2) => tứ giac BDAE là HBH
=> BE // AD mà M nằm tren AD => BE//AM
ế, hình bình hành BDAE có 2 đg chéo AB và DE cắt nhau tại trung điểm của mỗi đg
mà O là trug diem cua AB => O cũng là trung diem cua DE => 3 diem D,O,E thẳng hàng
Xét ∆MCD và ∆MBA
Có: MA = MD
góc BMA = góc DMC
MB = MC
=> ∆MCD = ∆MBA (c.g.c)
=> AB = CD (2 cạnh tương ứng)
Xét ∆MBD và ∆MCA
Có: MB = MC
góc BMD = góc AMC
MA = MD
=> ∆MBD = ∆MCA (c.g.c)
=> BD = AC
Xét ∆CAD và ∆BDA
Có: AD: cạnh chung
AB = CD (cmt)
BD = AC (cmt)
=> ∆CAD = ∆BDA (c.c.c)