\(\widehat{AOB}\)= 40o, lấy điểm C thuộc đoạn thẳng OA. Trên nửa m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

hình tự vẽ

a, Vì OK là tia phân giác của xOy

=> xOK = KOy = xOy/2

Xét △AOK và △BOK

Có: OA = OB (gt)

    AOK = KOB (gt)

    OK : cạnh chung

=> △AOK = △BOK (c.g.c)

=> AK = KB (2 cạnh tương ứng)

b, Vì △AOK = △BOK (cmt)

=> AKO = OKB (2 góc tương ứng)

Mà AKO + OKB = 180o (2 góc kề bù)

=> AKO = OKB = 90o

=> OK ⊥ AB

b) Vì H là trung điểm BC 

=> BH = HC 

Mà BH = BE (gt)

=> BH = HC = BE 

Vì ∆ABC cân tại A 

=> AB = AC 

Mà AB = CD (gt)

=> AB = AC = CD 

Ta có : 

EB + AB = AE 

HC + CD = HD 

=> AE = HD 

a) Ta có : 

ACB là góc ngoài tại C của ∆ACD 

Vì CA = CD 

=> ∆ACD cân tại C 

=> D = DAC = 2D 

=> ACB = D + CAD = 2D 

=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)

23 tháng 6 2019

M N x y z t

Giải : a) xy là đường trung trực của đoạn thẳng MN => \(\widehat{xOM}=\widehat{xON}=90^0\)

Do Ot là tia p/giác của \(\widehat{xON}\) nên

  \(\widehat{xOt}=\widehat{tON}=\frac{\widehat{xON}}{2}=\frac{90^0}{2}=45^0\)

b) Do Oz là tia p/giác của \(\widehat{xOM}\)nên

  \(\widehat{xOz}=\widehat{zOM}=\frac{\widehat{xOM}}{2}=\frac{90^0}{2}=45^0\)

Do Ox nằm giữa Ot và Oz nên \(\widehat{tOx}+\widehat{xOz}=\widehat{tOz}\)

=> \(\widehat{tOz}=45^0+45^0=90^0\)

=> Oz \(\perp\)Ot 

Vì Ot là phân giác xON 

=> xOt = NOt = 1/2 xON= 45 độ

Vì Oz là phân giác xOM 

=> xOz = mOz = 45 độ

=> zOt = 45 + 45 = 90 độ

=> OZ vuông góc với OT

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)