K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

c) Gọi I là giao điểm của d và BC.

Vì H và K là hình chiếu của B và C trên d nên ta có: BH và CK vuông góc với d

Từ đó suy ra \(BH\le BI\)\(CK\le CI\)(quan hệ giữa đường vuông góc và đường xiên)

\(\Rightarrow BH+CK\le BI+CI=BI\)

Vậy \(\Rightarrow BH+CK\le BI\)(điều phải chứng minh)

d) Từ phần b suy ra BH + CK đạt giá trị lớn nhất bằng BI, xảy ra khi Bh = BI, CK = CI , khi đó 3 điểm H, I, K trùng nhau, suy ra đường thẳng d vuông góc với BC tại I

Xem tại : https://h.vn/hoi-dap/question/189392.html

21 tháng 3 2016

a)xét tgAEB và tgADC có

A là góc chung

AE=AC(gt)

AB=AD(gt)

suy ra tgAEB = tgADC (c.g.c)

suy ra BE=AC(hai cạnh tương ứng

cho k trước đi rồi làm câu b;c;d cho

A B C E D P H K x M N

a) xét \(\Delta EAB\)và \(\Delta CAD\)có:

\(\hept{\begin{cases}AE=AC\left(gt\right)\\\widehat{EAB}=\widehat{DAC}\left(đđ\right)\\AB=AD\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta EAB=\Delta CAD\)(c - g - c)

\(\Rightarrow BE=DC\)( 2 cạnh tương ứng)

b) có \(\hept{\begin{cases}BE=2MB\left(gt\right)\\CD=2ND\left(gt\right)\\BE=CD\left(cmt\right)\end{cases}}\)

\(\Rightarrow MB=ND\)

\(\Delta EAB=\Delta CAD\left(cmt\right)\)

\(\Rightarrow\widehat{D}=\widehat{ABE}\)( 2 cạnh tương ứng )

xét \(\Delta DAN\)\(\Delta BAM\)

\(\hept{\begin{cases}ND=MB\left(cmt\right)\\\widehat{D}=\widehat{ABM}\left(cmt\right)\\AD=AB\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta DAN=\Delta BAM\left(c-g-c\right)\)

\(\Rightarrow\)AM = AN ( 2 cạnh tương ứng )

       \(\widehat{DAN}=\widehat{MAB}\)( 2 cạnh tương ứng )

mà \(\widehat{DAN}+\widehat{NAB}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{MAB}+\widehat{NAB}=180^o\Rightarrow\widehat{MAN}=180^o\)

\(\Rightarrow\)M, N, A thẳng hàng

c) gọi BC cắt Ax tại P

\(\Rightarrow\hept{\begin{cases}BH\le BP\left(cgv\le ch\right)\\CK\le CP\left(cgv\le ch\right)\end{cases}}\)

\(\Rightarrow BH+CK\le BP+CP\)

\(\Rightarrow BH+CK\le BC\)

d) có\(BH+CK\le BC\left(cmt\right)\)

\(\Rightarrow GTLN\)của \(BH+CK=BC\)

dấu bằng xảy ra

\(\Leftrightarrow BH=BP;CK=CP\)

\(\Leftrightarrow H\equiv P;K\equiv P\)

\(\Leftrightarrow Ax\perp BC\)

\(\Rightarrow BH+CK\)lớn nhất

12 tháng 11 2018

a) \(\Delta ABM\)và \(\Delta ACM\)

+ AB = AC(gt)

+ BM = CM(gt)

+ Chung AM 

Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)

=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(\widehat{ABD}=\widehat{ACE}\)

+ AB = AC (gt)

+BD = EC(gt)

\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)

12 tháng 11 2018

Xét \(\Delta AHB\)và \(\Delta AKC\)

+ AH = AK (gt)

+ AB = AC (gt)

\(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)

=> HB=CK ( hai cạnh tương ứng)

d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng 

Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)

\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

Xét \(\Delta BAO=\Delta CAO\)

+ AB = CA (gt)

+ Chung AO

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)

=>OB = OC (hai cạnh tương ứng)

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng