Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n\ne1\)
b) Nếu n = 2 thì \(B=\frac{5}{2-1}=\frac{5}{1}\)
Nếu n = -7 thì B = \(\frac{5}{-7-1}=\frac{5}{-8}\)
c)Dể B là một số nguyên thì \(5⋮n-1\)hay \(n-1\inƯ\left(5\right)\)
Ư(5)={ 1 ; -1 ; 5 ; -5 }
Ta có bảng sau :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Để \(\frac{3n+7}{3n-1}\inℕ^∗\)thì \(3n+7⋮3n-1\)
\(\Leftrightarrow3n-1+8⋮3n-1\Leftrightarrow8⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
3n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
3n | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
n | 2/3 ktm | 0 | 1 | -1/3 ktm | 5/3 ktm | -1 | 3 | -7/3 ktm |
A E Z<=>3n-5 chia hết cho n+1
=>3.(n+1)-8 chia hết cho n+1
mà 3.(n+1) chia hết cho n+1
=>8 chia hết cho n+1
=>n+1 E Ư(8)={-8;-4;-2;-1;1;2;4;8}
=>n E {-9;-5;-3;-2;0;1;3;7}
vậy...
Để A là số nguyên thì 3n-5 chia hết cho n+1
=>3n+3-8 chia hết cho n+1
=>3(n+1)+8 chia hết cho n+1
Mà 3(n+1) chia hết cho n+1
=>8 chia hết cho n+1
=>n+1\(\in\)Ư(8)={-8,-4,-2,-1,1,2,4,8}
=>n\(\in\){-8,-5,-3,-2,0,1,3,7}
hồi nãy nhấn nhầm, tiếp nhé.
=> 3 chia hết cho (n-2) (Vì n-2 chia hết n-2)
=> n-2 thuộc Ư(3)={-1;1;-3;3}
n-2 | -1 | 1 | 3 | -3 |
---|---|---|---|---|
n | 1 | 3 | 5 | -1 |
Vậy n thuộc{ 1; 3 ; 5 ; -1 }
Để D thuộc Z thì 2n + 7 chia hết cho n + 3
Ta có : 2n + 7 = 2n + 3 + 4
Mà 2n + 3 chia hết cho n + 3
=> 4 chia hết cho n + 3
=> n + 3 thuộc Ư ( 4 )
Ư ( 4 ) = { 1 ; - 1 ; 2 ; -2 ; 4 ; -4 }
Vậy n thuộc { -2 ; -4 ; -1 ; -5 ; 1 ; -7 }
để D là số nguyên thì (2n+7) chia hết cho (n+3) ta có ; 2n+7=2n+6+1 để (2n+7) chia hết cho (n+3) hay (2n+6+1) chia hết cho (n+3) ma (2n+6) chia hết cho (n+3) nên 1 chia hết cho (n+3) hay n+3 thuộc U(1) Ma U(1)={-1;1} suy ra n+3 thuộc {-1;1} suy ra n thuộc {-4;-2}
Ta có 3 là số lẻ và 2n-2 là số chẵn
=> ƯCLN (3;2n-2)=1
=> Không có giá trị n để \(\frac{3}{2n-2}\)là số nguyên
=> \(n\in\varnothing\)
a)
Để A thuộc Z thì ( dấu " : " là chia hết cho )
n + 1 : n - 2
n - 2 + 3 : n - 2
=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Sau đó tìm n là xong
b) Cũng gần tương tự như phần a !
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất
mà n nguyên ( theo đề bài )
=> 3 : n - 3
Ta có bảng :
Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0