Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý cho bạn:
Xét Aa với a nguyên dương, nhân vs can 2n-1 để dưới mẫu hết căn rồi thực hiện biến đổi thành phép trừ, sau đó phân thích theo hằng đẳng thức số 3. Nhân căn 2n-1 lức nãy vs thừa số có 2 phép cộng sau khi ph rồi cm thừa số sau nhân <1
\(\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\)
\(\Leftrightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{n}{2n-1}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{2\left(a_1+a_2+...+a_n\right)-\left(a^2_1+a^2_2+...+a_n^2\right)}\)
\(\Rightarrow\dfrac{a^2_1}{2a_1-a^2_1}+\dfrac{a^2_2}{2a_2-a^2_2}+...+\dfrac{a^2_n}{2a_n-a^2_2}\ge\dfrac{1}{2-\left(a^2_1+a^2_2+...+a_n^2\right)}\)
Chứng minh rằng \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)
\(\Leftrightarrow2n-1\ge n\left[2-\left(a^2_1+a^2_2+...+a^2_n\right)\right]\)
\(\Leftrightarrow2n-1\ge2n-n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow-1\ge-n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow1\le n\left(a^2_1+a^2_2+...+a^2_n\right)\)
\(\Leftrightarrow\dfrac{1}{n}\le a^2_1+a^2_2+...+a^2_n\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow VP=\dfrac{a^2_1}{1}+\dfrac{a^2_2}{1}+...+\dfrac{a^2_n}{1}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}=\dfrac{1}{n}\)
\(\Rightarrow\) đpcm
Vậy \(\dfrac{1}{2-\left(a^2_1+a_2^2+...+a^2_n\right)}\ge\dfrac{n}{2n-1}\)
\(\Rightarrow\dfrac{a_1}{2-a_1}+\dfrac{a_2}{2-a_2}+...+\dfrac{a_n}{2-a_n}\ge\dfrac{n}{2n-1}\) ( đpcm )
\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)
\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)
\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)
\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)