K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

16 tháng 12 2019

a

\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)

b

\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)

c

Với \(x=4\Rightarrow A=-3\)

d

Để A nguyên thì \(\frac{3}{x-3}\) nguyên

\(\Rightarrow3⋮x-3\)

 Làm nốt.

16 tháng 12 2019

toi moi lop 5

d> Ta có: \(\frac{-1}{x-2}\)( Theo a )

 Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1

  *> X-2=1 => X=3 (TMĐK)

  *> X-2=-1 => X=1 (TMĐK)

27 tháng 3 2020

a) A có nghĩa khi \(\hept{2x-2\ne02-2x^2\ne0\Leftrightarrow\hept{\begin{cases}2x\ne2\\2x^2\ne2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne\pm1\end{cases}\Leftrightarrow}x\ne\pm1}\)

Vậy A có nghĩa khi \(x\ne\pm1\)

b) \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\left(x\ne\pm1\right)\)

\(\Leftrightarrow A=\frac{x}{2\left(x-1\right)}+\frac{x^2+1}{2\left(1-x^2\right)}\)

\(\Leftrightarrow\frac{x}{2\left(x-1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x^2+x-x^2+1}{2\left(x-1\right)\left(x+1\right)}=\frac{x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{1}{2\left(x-1\right)}\)

Vậy A=\(\frac{1}{2\left(x-1\right)}\left(x\ne\pm1\right)\)

b) \(A=\frac{1}{2\left(x-1\right)}\left(x\ne\pm1\right)\)

A=\(\frac{-1}{2}\)\(\Leftrightarrow\frac{1}{2\left(x-1\right)}=\frac{-1}{2}\)

\(\Leftrightarrow-2\left(x-1\right)=2\)

<=> x-1=-1

<=> x=0 (tmđk)

Vậy x=0 thì \(A=\frac{-1}{2}\)

27 tháng 3 2020

a) \(x\ne1,2;x\inℝ\)

23 tháng 2 2020

a) Rút gọn :

\(ĐKXĐ:x\ne\pm5\)

Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{2x-5}{x\left(x+5\right)}-\frac{2x}{5-x}\)

\(=\left(\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right):\frac{\left(2x-5\right)\left(x-5\right)+2x^2\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}\)

\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)\left(x-5\right)}{ }\)

Tui đang định làm tiếp đó, nhưng khẳng định đề này hơi sai sai ở vế bị chia. Bạn xem lại đc k ?

10 tháng 3 2020

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)

\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)

\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)