Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=c+d\)
\(\Rightarrow a-b-c-d=0\)
\(\Rightarrow2a\left(a-b-c-d\right)=0\)
\(\Rightarrow a^2+b^2+c^2+d^2+2a\left(a-b-c-d\right)=a^2+b^2+c^2+d^2\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2\) là tổng 3 số chính phương.
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
a) đặt a/b = c/d = k suy ra a = bk ; c = dk
a/a - b = bk/bk - b = k/k - 1 (1)
c/c - d = dk/dk - d = k/k - 1 (2)
từ (1)(2) suy ra a/a - b = c/c - d
b,c tương tự đặt k còn lại bạn tự lm nha!!!
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (dãy tỉ số bằng nhau)
Ta có: \(\frac{a}{c}=\frac{a-b}{c-d}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (đpcm) (tính chất tỉ lệ thức)
b)Bạn tham khảo bài mình làm tại đây nhé!
c) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\) (1) .Mặt khác,theo t/c dãy tỉ số bằng nhau: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (2)
Từ (1) và (2),suy ra đpcm: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
#)Giải :
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)
\(\Rightarrowđpcm\)
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
Mk chỉ tìm thấy trường hợp thỏa mãn này mà có \(a,b,c,d< 100\)
\(53^2+83^2=17^2+97^2\) (GTNN của \(a+b+c+d\) là \(53+83+17+97=250\))
\(23^2+71^2=43^2+61^2\) (GTNN của \(a+b+c+d\) là \(23+71+43+61=198\))
\(\Rightarrow GTNN\) của \(a+b+c+d=198\)
Mk sẽ cố gắng tìm thêm và tìm ra cách giải vì cả kq và cách giải mk đều ko chắc. Bạn có đáp án ko?
Mình lạc mất đáp án rùi :(((