\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(A=\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}\ge\dfrac{4}{2b}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{a+b-c+c+a-b}\ge\dfrac{4}{2a}\ge\dfrac{2}{a}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow A\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(dấu"="xảy\) \(ra\Leftrightarrow a=b=c\)

7 tháng 11 2018

bđt \(\Leftrightarrow\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Ta có: \(\left(\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{bc}}{\sqrt{a}}\right)+\left(\dfrac{\sqrt{ab}}{\sqrt{c}}+\dfrac{\sqrt{ca}}{\sqrt{b}}\right)\ge2\sqrt{b}+2\sqrt{c}+2\sqrt{a}\)

\(\Leftrightarrow2\left(\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\Leftrightarrow\dfrac{\sqrt{bc}}{\sqrt{a}}+\dfrac{\sqrt{ca}}{\sqrt{b}}+\dfrac{\sqrt{ab}}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\left(đpcm\right)\)

5 tháng 12 2018

@Akai Haruma

2 tháng 3 2019

Vì vai trò của a,b,c là như nhau, giả sử

\(a\ge c\ge b>0\)

Ta có

\(a+b-c< a\)

\(\Leftrightarrow b-c\le0\) ( đúng với gt )

\(\Rightarrow a+b-c< a\)

\(\Leftrightarrow\left(a+b-c\right)^2< a^2\)

\(\Leftrightarrow\dfrac{1}{\left(a+b-c\right)^2}\ge\dfrac{1}{a^2}\)

CMTT :

\(\dfrac{1}{\left(b+c-a\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{c^2}\)

Cộng vế với vế 3 BĐT trên , được

\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Lời giải:

Từ \(a+b+c\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Rightarrow a+b+c\geq \frac{ab+bc+ac}{abc}\Rightarrow abc(a+b+c)\geq ab+bc+ac\)

\(\Rightarrow a^2b^2c^2(a+b+c)^2\geq (ab+bc+ac)^2(1)\)

Áp dụng BĐT AM-GM:
\(a^2b^2+b^2c^2\geq 2ab^2c\)

\(b^2c^2+c^2a^2\geq 2abc^2\)

\(a^2b^2+c^2a^2\geq 2a^2bc\)

Cộng theo vế, rút gọn \(\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)

\(\Rightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)

Từ \((1);(2)\Rightarrow a^2b^2c^2(a+b+c)^2\geq 3abc(a+b+c)\)

\(\Rightarrow abc(a+b+c)\geq 3\Rightarrow a+b+c\geq \frac{3}{abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

7 tháng 12 2017

1) Đặt T là vế trái của BĐT

Áp dụng BĐT Cauchy-Schwarz và AM-GM, ta có:

\(T=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{1}{x^2+y^2+z^2}=1\)

Vậy ta có đpcm.Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

7 tháng 12 2017

3)b) Đặt T là vế trái, áp dụng AM-GM ta có:

\(b+c=\left(b+c\right)\left(a+b+c\right)^2\ge\left(b+c\right)4a\left(b+c\right)=4a\left(b+c\right)^2\ge16abc\)

Tham khảo 

undefined

20 tháng 3 2021

bạn trình bày rõ bđt 1/x + 1/y >_ 4/x+y dc ko vì mình ko hiểu lắm

 

14 tháng 8 2018

Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)\(\dfrac{\left(1+1+1\right)^2}{a+b+c+1+1+1}=\dfrac{9}{a+b+c+3}\text{ ≥}\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

\("="\text{⇔}a=b=c=1\)