K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

Chịu!T lớp 6 nên ko bits^.^

12 tháng 11 2018

Câu 1 : A

Vì y = 3 . - 1 = - 3 \(\ne\)3 => ( -1 ; 3 ) không thuộc đồ thị hàm số y = 3x

Câu 2 : D

f ( - 1 ) = 3 . ( - 1 ) \(^2\)+ 5 =  8

23 tháng 11 2018

chọn đáp án D

24 tháng 11 2018

Đáp án D. Vì \(f\left(-2\right)=2.\left(-2\right)^2+3=2.4+3=8+3=11\)

Mn oi, help meeeeeeeeeee.........!!!!!!!!!!!!!! :"(Câu 1: The ratio of three possitive integers a,b and c is 25:34 16:25 34:16. Sum of squares of them is 24309. Find the sum of them?*Tạm dịch: Tỉ lệ của 3 số nguyên dương a,b và c là 25:34 16:25 34:16. Tổng bình phương của chúng là 24309. Tìm tổng của chúng?Câu 2: Tìm giá trị của:A=\(\left(1-\frac{1}{1+2}\right)X\left(1-\frac{1}{1+2+3}\right)X...X\left(1-\frac{1}{1+2+3+...+2016}\right)\) *Chú Ý: "X"...
Đọc tiếp

Mn oi, help meeeeeeeeeee.........!!!!!!!!!!!!!! :"(

Câu 1: The ratio of three possitive integers a,b and c is 25:34 16:25 34:16. Sum of squares of them is 24309. Find the sum of them?

*Tạm dịch: Tỉ lệ của 3 số nguyên dương a,b và c là 25:34 16:25 34:16. Tổng bình phương của chúng là 24309. Tìm tổng của chúng?

Câu 2: Tìm giá trị của:

A=\(\left(1-\frac{1}{1+2}\right)X\left(1-\frac{1}{1+2+3}\right)X...X\left(1-\frac{1}{1+2+3+...+2016}\right)\) *Chú Ý: "X" là dấu nhân, "x" là chx cái x

A.\(\frac{2015}{4031}\)

B.\(\frac{2015}{2016}\)

C.1

D.\(\frac{1009}{3024}\)

Câu 3: Chose the correct answer. Which the following functions satisfies f(x1-x2)=f(x1)+f(-x2)?

A.f(x)=10x

B.f(x)=\(\frac{10}{x}\)

C.f(x)=10x+2

D.f(x)=\(\frac{1}{2x+1}\)

*Tạm dịch*

Chọn đáp án đúng. Hàm số nào thỏa mãn f(x1-x2)=f(x1)+f(-x2)?

A.f(x)=10x

B.f(x)=\(\frac{10}{x}\)

C.f(x)=10x+2

D.f(x)=\(\frac{1}{2x+1}\)

!Mn nhớ ghi đáp án vs cách giải ra rõ ràng nha, mik chuẩn bị thi vào thứ Ba (14/1/2020) r nên mn bik câu nào cứ lm theo cách hỉu của pạn nhe! :3

Xin chân thành cảm ơn rất rất nhìu vì đã giải dùm mik nhoa! :D

0
Câu 1:thực hiện tínhC=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))Câu 2:tìm xa)   (x-2)(x+3) <0b)   3x+2+4.3x+1+3x-1Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,zCâu 5:  Cho tam giác ABC...
Đọc tiếp

Câu 1:thực hiện tính

C=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))

Câu 2:tìm x

a)   (x-2)(x+3) <0

b)   3x+2+4.3x+1+3x-1

Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)

Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,z

Câu 5:  Cho tam giác ABC vuông cân tại A.Gọi D là một điểm bất kì trên cạnh BC (D khác B và C ).Vẽ hai tia Bx;Cy vuông góc với BC và nằm trên cùng một nửa mặt phẳng có bờ chứa BC và điểm  A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) \(\Delta\)AMB =\(\Delta\)ADC

b) A là trung điểm của MN

c) chứng minh \(\Delta\)vuông cân

Câu 6:Cho\(\Delta\)ABC cân tại A=100 độ .Gọi M là 1 điểm nằm trong tam giác sao cho góc MBC =10 độ ;góc MCB=20 độ .Tính góc AMB

 

0
9 tháng 2 2020

Sai thì thôi nhé!

a) \(f\left(-3\right)=\frac{2}{3}\times-3-\frac{1}{2}=-2-\frac{1}{2}=\frac{-4}{2}-\frac{1}{2}=\frac{-5}{2}\)

\(f\left(\frac{3}{4}\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\)

b) \(f\left(x\right)=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x-\frac{1}{2}=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x=1\Leftrightarrow x=1:\frac{2}{3}\Leftrightarrow x=1\times\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\)

c)\(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\left(1\right)\)

 \(A\left(\frac{3}{4};-\frac{1}{2}\right)\)

\(A\left(\frac{3}{4};\frac{-1}{2}\right)\Rightarrow\hept{\begin{cases}x_A=\frac{3}{4}\\y_A=\frac{-1}{2}\end{cases}}\)

Thay \(x_A=\frac{3}{4}\)vào (1) ta có: 

\(y=f\left(x\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\ne y_A\)

Vậy điểm A không thuộc đồ thì hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)

\(B\left(0,5;-2\right)\)

\(B\left(0,5;-2\right)\Rightarrow\hept{\begin{cases}x_B=0,5\\y_B=-2\end{cases}}\)

Thay \(x_B=0,5\)vào (1) ta có: 

\(y=f\left(x\right)=\frac{2}{3}\times0,5-\frac{1}{2}=\frac{1}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=\frac{-1}{6}\ne y_B\)

Vậy điểm B không thuộc đồ thị hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)

 Bài 1 :1, Tính giá trị biểu thức : a, A =\(\frac{\left(1+2+3+...+2019\right)\cdot\left(12\cdot3,4-6,8\cdot6\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}\)b, B =\(\frac{4}{3\cdot5}-\frac{6}{5\cdot7}+\frac{8}{7\cdot9}-\frac{10}{9\cdot11}+\frac{12}{11\cdot13}-...+\frac{100}{99\cdot101}\)  2, Cho : A =  \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}\)               B = \(\frac{1}{2017}+\frac{2}{2016}+\frac{3}{2018}+...+\frac{2016}{2}+\frac{2017}{1}\)   ...
Đọc tiếp

 Bài 1 :

1, Tính giá trị biểu thức :

 a, A =\(\frac{\left(1+2+3+...+2019\right)\cdot\left(12\cdot3,4-6,8\cdot6\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}\)

b, B =\(\frac{4}{3\cdot5}-\frac{6}{5\cdot7}+\frac{8}{7\cdot9}-\frac{10}{9\cdot11}+\frac{12}{11\cdot13}-...+\frac{100}{99\cdot101}\) 

 2, Cho : A =  \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}\)

               B = \(\frac{1}{2017}+\frac{2}{2016}+\frac{3}{2018}+...+\frac{2016}{2}+\frac{2017}{1}\)

               CMR :     A : B là số nguyên

 Bài 2 :

 a, Tìm x biết : 2019 - | x-2019 | = x

 b, Tìm \(x\inℤ\)để \(ℚ\)=\(\frac{4x-3}{3x+1}\)có giá trị là số tự nhiên 

 c, Tìm các số nguyên tố x,y sao cho : 15x + 10y = 2000

 Bài 3 :

 a, Cho ba số a,b,c thỏa mãn : \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

     Tính M : \(\frac{\left(ab+bc+ca\right)^{1008}}{a^{2019}+b^{2019}+c^{2019}}\)

b, Cho x,y,z ; a,b,c thỏa mãn : \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{ℤ}{4a-4b+c}\)

                                                   CMR : \(\frac{a}{x+2y+Z}=\frac{b}{2x+y-Z}=\frac{Z}{4x-4y+Z}\)

 Bài 4 : Cho hàm số : y = f(x) thỏa mãn : f (x1+x2) = f (x1) +f (x2)và f (x) - x.f (-x) = x+1           \(\left(\forall x\inℝ\right)\)

            a, CMR : M ( 0 ; 1 ) thuộc đồ thị hàm số 

            b, Tính f (2019)

 Bài 5 : cho đoạn thẳng AB ; D là trung điểm của AB . Trên cùng 1 nửa mặp phẳng bờ chứa AB vẽ 2 tia Ax , By cùng \(\perp\)AB. Trên Ax ,By lần lượt lấy C,D sao cho \(\widehat{COD}\)= 90o . Tia CD cắt tia DB tại E :

 1, CMR : a,\(\Delta CDE\)cân

                b, CO là tia phân giác của \(\widehat{ACD}\)

 2, Vẽ  \(OM\perp CD\).  CMR : AMB vuông tại M

 3, Gọi S là diện tích \(\Delta AMB\). Giả sử  AB = a . Tìm giá trị lớn nhất của S (theo a)

                                   ( ai trả lời nhanh nhất mk tick cho )

0