Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x, y không chia hết cho 3 thì x2 chia cho 3 dư 1, do đó (x2+2)2(x2+2)2 chia hết cho 3.
Mà 2y4+11y2+x2y2+92y4+11y2+x2y2+9 không chia hết cho 3 nên suy ra vô lí.
Do đó x = 3 hoặc y = 3 (Do x, y là các số nguyên tố).
Với x = 3 ta có 2y4+20y2+9=121⇔y4+10y2−56=0⇔(y2−4)(y2+14)=0⇔y=22y4+20y2+9=121⇔y4+10y2−56=0⇔(y2−4)(y2+14)=0⇔y=2 (Do y là số nguyên tố).
Với y = 3 ta có:
(x2+2)2=9x2+270⇔x4−5x2−266=0⇔(x2+14)(x2−19)=0(x2+2)2=9x2+270⇔x4−5x2−266=0⇔(x2+14)(x2−19)=0. Không tồn tại số nguyên tố x thoả mãn.
Vậy x = 2; y = 3.
pt⇔y2(x2−7)=(x+y)2(1)pt⇔y2(x2−7)=(x+y)2(1)
Phương trình đã cho có nghiệm x=y=0x=y=0
Xét x,y≠0x,y≠0, từ (1)(1) suy ra x2−7x2−7 là một số chính phương
Đặt x2−7=a2x2−7=a2 ta có:
(x−a)(x+a)=7(x−a)(x+a)=7 từ đây tìm được x
Vậy (x,y)=(0,0);(4,−1);(4,2);(−4,1);(−4;−2)
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
Vì x dương nên \(x^3+3x^2+5>x+3\)
hay \(5^y>5^z\Rightarrow5^y⋮5^z\)
\(\Rightarrow x^3+3x^2+5⋮x+3\)
\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)
Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)
\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)
và \(5^y=8+12+5=25\Rightarrow y=2\)
Vậy x = 2; y = 2; z = 1
x^2-25x^4=0
=>x^2-25x^2.x^2=0
=>x^2.(1-25x^2)=0
=>x=0 hoặc x^2=1/25
=>x thuộc {-0,2;0;0,2}
2) 2 giá trị
3)x^2+7x+12=0
=>x^2+3x+4x+3.4=0
=>x(x+3)+4(x+3)=0
=>(x+4)(x+3)=0
=>x=-3;x=-4
nhớ ****
1)x thuộc {-0,2;0;0,2}
2)2 giá trị
3)x^2+3x+4x+4.3=0
=>x(x+3)+4(x+3)=0
=>(x+3)(x+4)=0
=>x=-4;x=-3
1)x2-25x4=0
x2(1-25x2)=0
=>x^2=0 hoặc 1-25x^2=0
x=0 25x^2=-1-0=1
x^2=1/25=(1/5)^2=(1/-5)^2
Vậy S={-1/5;0;1/5}
2)Có 3 giá trị là 0;1;2
3)có 2 giá trị là -3;-4
Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)
\(\left(y+2\right)^{30}\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)
Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)
\(\Rightarrow x-1=y+2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức A ta được:
\(A=2.1^5-5.\left(-2\right)^3+4=-76\)
Vậy A = -76 tại x = 1 và y = -2.
Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)
Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46
pt⇔y2(x2−7)=(x+y)2(1)
Phương trình đã cho có nghiệm x=y=0x=y=0
Xét x,y\ne0x,y≠0, từ (1)(1) suy ra x^2-7x2−7 là một số chính phương
Đặt x^2-7=a^2x2−7=a2 ta có:
\left(x-a\right)\left(x+a\right)=7(x−a)(x+a)=7 từ đây tìm được x
Vậy (x,y)=(0,0);(4,-1);(4,2);(-4,1);(-4;-2)(x,y)=(0,0);(4,−1);(4,2);(−4,1);(−4;−2)
Học tốt^^