K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

\(|3-5x|=7\)

\(\Rightarrow\orbr{\begin{cases}3-5x=7\\3-5x=-7\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-5x=4\\-5x=-10\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=2\end{cases}}\)

13 tháng 5 2019

\(\frac{x+2}{x-2}+\frac{x^2}{4-x^2}=\frac{-6}{x+2}\)

\(\Rightarrow\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{x^2}{\left(x-2\right)\left(x+2\right)}=\frac{-6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2+4x+4-x^2=-6x+12\)

\(\Rightarrow4x+4=-6x+12\)

\(\Rightarrow10x=8\)

\(\Rightarrow x=\frac{4}{5}\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

31 tháng 12 2019

1. \(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{x^2-1}\)

\(-\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{-x-1+x-1+2}{\left(x-1\right)\left(x+1\right)}=0\)

c) \(\left(\frac{x^2-16}{x^2+8x+16}+\frac{6}{x+4}\right)\cdot\frac{2x}{x+2}\)

\(\left(\frac{x^2-16}{\left(x+4\right)^2}+\frac{6\left(x+4\right)}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)

\(\left(\frac{x^2-16+6x+24}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)

\(\frac{x^2+6x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x-2}\)

\(\frac{x^2+4x+2x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}\)

\(\frac{\left(x+4\right)\left(x+2\right)}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}=\frac{2x}{x+4}\)