Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a^3 + b^3=(a + b)^3 - 3a2b - 3ab2=(a + b)^3 - 3ab(a + b)
b, a^3 + b^3 + c^3 - 3abc= (a + b)^3 + c3 - 3ab(a + b)-3abc
=(a + b + c)\([\)(a + b)2- (a + b)c +c2\(]\)- 3ab(a + b + c)
=(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab)
=(a + b + c)(a2 + b2 + c2 - ab - bc- ca)
a) VP = (a+b)3 - 3ab(a+b)
=[a3 + b3 + 3ab(a+b)] - 3ab(a+b)
= a3 + b3 = VT
b)
a3+b3+c3−3abc
=(a+b)3+c3−3a2b−3ab2−3abc
=(a+b+c)3[(a+b)2−(a+b)c+c2]−3ab(a+b)−3abc
=(a+b+c)(a2+b2+2ab−ac−bc+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+2ab−ac−bc+c2−3ab)
=(a+b+c)(a2+b2+c2-ab-bc-ca) (đpcm)
nhớ đúng cho mk nha !!!!!
a) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3=VT\)
b) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
a.
Xét vế phải, ta có : \(\left(a+b\right)^3-3ab\left(a+b\right)\)= \(\left(a^3+3a^2b+3ab^2+b^3\right)-\left(3a^2b+3ab^2\right)\)
=\(a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)=\(a^3+b^3\)(đpcm)
b
Xét vế phải, ta có \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)= ..........
Ý b bạn nhân vế phải vào rồi rút gọn sẽ ra vế trái :)
a) Biến đôi vế phải ta có:
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2\cdot b+b^3-3a^2\cdot b-3ab^2\)
\(=a^3+b^3\)
Vậy VT = VP
=> Đẳng thức được chứng minh
c) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
d) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
I don't now
...............
.................
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
a^3 +b^3+c^3-3abc
=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2+c^3-3abc
=(a+b)^3+c^3-3ab(a+b+c)
= (a+b+c)((a+b)^2+(a+b)c+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2+ac+bc+c^-3ab)
=(a+b+c)(a^2+b^2+c^2+ab+bc+ac)
Câu 1:
a: \(A=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+...+3+2+1\)
=5050
b: \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\cdot\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(=2^{128}\)
c: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2-2\left(a+b\right)^2\)
\(=2c^2\)
a, ta có : (a+b)3- 3ab(a+b)=a3+3a2b+3ab2+b3-3a2b-3ab2
=a3+b3(đpcm)
a)\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c^3-3abc\)
=\(\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)-2abc-ca^2-cb^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(abc+b^2c+bc^2+ca^2+abc+c^2a\right)+c^3+ac^2+bc^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(a+b+c\right)\cdot\left(bc+ca\right)+c^2\cdot\left(a+b+c\right)\)
=\(\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Chúc bạn học tốt!