Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Bài 3
Trả lời:
a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
~Học tốt!~
Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Bài 2
a, Xét tam giác OBN và tam giác MAO ta có:
OB=OA( giả thiết)
góc OBN= góc OAM=90 độ
có chung góc O
⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)
suy ra: ON=OM(hai cạnh tương ứng)
+ vì OA=OB và ON=OM
suy ra : OM-OB=ON-OA
suy ra : BM=AN
b, theo câu a ta có :
tam giác OBN= tam giác OAM
suy ra : góc ANH = góc BMH( hai góc tương ứng )
xét tam giác HMB và tam giác HAN ta có
BN=AN
góc HAN = góc HBM = 900
góc ANH = góc HBM
suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)
suy ra : HB=HA(hai cạnh tương ứng)
xét tam giác OHA và tam giác OHB ta có
OA=OB(giả thiết)
HB=HA
OH là cạnh chung
suy ra: tam giác OHA = tam giác OHB(c.g.c)
suy ra: góc BOH= góc AOH( hai góc tương ứng)
vậy OH là tia phân giác của góc xOy
c, xét tam giác MOI và tam giác NOI ta có :
OM=On ( giả thiết)
góc BOH= góc HOA
Oi là cạnh chung
suy ra tam giác MOI= tam giác NOI(c.g.c)
suy ra góc MIO = góc NIO (hai góc tương ứng)
mà góc MIO + góc NIO = 1800 ( hai góc kề bù)
nên OI vuông góc với MN
áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng
Bài 3 mình không biết làm :)))
Chúc bạn học tốt ~!
1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow AB=AC\)
XÉT \(\Delta ADB\)VÀ\(\Delta ADC\)CÓ
\(AB=AC\left(CMT\right)\)
\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)
\(AD\)LÀ CẠNH CHUNG
\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)
B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABC\)CÂN TẠI A
=> AB=AC
2)
a, ta co B = 70 độ , góc C=50 độ
=>bac=180-(70+50)=60
b, ta co mn//ac ma k thuoc ac => mn//ak
=>goc akn = goc knm (2 goc nam o vtri sole trg)
xet tam giac akn va tam giac kmn co
ak=mn (gt)
goc akn = goc knm (cmt)
kn chung
=>tam giac akn= tam giac mnk (cgc)