K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

Đề bài là gì vậy ạ?

NV
21 tháng 2 2020

Với \(m\ne-1\)

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-1\right)\left(m+5\right)>0\)

\(\Leftrightarrow\left(m-1\right)\left(m-1-m^2-6m-5\right)>0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2+5m+6\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\-2< m< 1\end{matrix}\right.\)

Đặt \(f\left(x\right)=\left(m+1\right)x^2-2\left(m-1\right)x+m^2+4m-5\)

Để pt có 2 nghiệm thỏa mãn \(x_2>x_1>2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}-2>0\\a.f\left(2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m-1}{m+1}-2>0\\\left(m+1\right)\left[4\left(m+1\right)-4\left(m-1\right)+m^2+4m-5\right]>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-m-3}{m+1}>0\\\left(m+1\right)\left(m^2+4m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< -1\\\left\{{}\begin{matrix}m>-3\\m\ne-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-3< m< -1\)

Kết hợp điều kiện delta \(\Rightarrow-2< m< -1\)

NV
5 tháng 2 2020

Đặt \(x^2=t\ge0\Rightarrow x=\pm\sqrt{t}\)

Phương trình trở thành: \(t^2-3mt+m^2+1=0\)

Theo định lý Viet: \(\left\{{}\begin{matrix}t_1+t_2=3m\\t_1t_2=m^2+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1=\sqrt{t_1}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_2}\\x_4=-\sqrt{t_2}\end{matrix}\right.\) \(\Rightarrow x_1+x_2+x_3+x_4=0\)

Lại có \(x_1x_2=\sqrt{t_1}.\left(-\sqrt{t_1}\right)=-t_1\) ; tương tự \(x_3x_4=-t_2\)

\(\Rightarrow x_1x_2x_3x_4=t_1t_2=m^2+1\)

\(\Rightarrow M=m^2+1\)

NV
15 tháng 5 2020

Để BPT vô nghiệm

\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)\le0\)

\(\Leftrightarrow m^2-4m-12\le0\)

\(\Rightarrow-6\le m\le2\)

Đáp án C